机器学习入门-DBSCAN聚类算法】的更多相关文章

DBSCAN 聚类算法又称为密度聚类,是一种不断发张下线而不断扩张的算法,主要的参数是半径r和k值 DBSCAN的几个概念: 核心对象:某个点的密度达到算法设定的阈值则其为核心点,核心点的意思就是一个点在半径r的范围内,如果存在k个值,那么这个点就成为核心对象 直接密度可达:若点p在q的邻域内,且q是核心,则p-q称为直接密度可达 密度可达:若有q1, q2...qk,对任意qi与qi-1是直接密度可达,从q1和qk则是密度可达 边界点: 属于一个类的非核心点,不能再发展下线 噪声点: 不属于任…
可以看该博客:https://www.cnblogs.com/aijianiula/p/4339960.html 1.知识点 """ 基本概念: 1.核心对象:某个点的密度达到算法设定的阈值则其为核心点(即r邻域内点的数量不小于minpts) 2.邻域的距离阈值:设定的半径r 3.直接密度可达:某点p在点q的r邻域内,且q是核心点,则表示p-q是直接密度可达 4.噪声点:不属于任何一个类族的点 5.边界点:属于某一个类的非核心点,不能发展下线(即边界点没有密度可达的点) 超参…
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,想想如果给你50个G这么大的文本,里面已经分好词,这时需要将其按照给定的几十个关键字进行划分归类,监督学习的方法确实有点困难,而且也不划算,前期工作做得太多了. 这时候可以考…
机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题.简单的说,k-近邻算法 采用了测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.控件复杂度高 适用数据范围:数值型和标称型 首先我们来理解它的工作原理: 存在一个样本数据集(训练集),并且我们知道每一数据与目标变量的对应关系,输入没有标签的新数…
时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数,以及一些简单的算法--kNN算法.决策树算法等. 那么,今天就用聚类和K-Means算法来结束我们这段机器学习之旅. 1. 聚类 1.1 什么是聚类 将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他…
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类: (2)与K-MEANS比较起来,不需要输入要划分的聚类个数: (3)聚类簇的形状没有偏倚: (4)可以在需要时输入过滤噪声的参数. 缺点: (1)当数据量增大时,要求较大的内存支持I/O消耗也很大: (2)当空间聚类的密度不均匀.聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难. (3)算法聚类效果依赖与距离公式选取,实际应用中常用欧式距离,对于高维数据,存在“维数灾难”. 参考…
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 下面这样的结构应该比较常见,这就是一种层次聚类的树结构,层次聚类是通过计算不同类别点的相似度创建一颗有层次的树结构,在这颗树中,树的底层是原始数据点,顶层是一个聚类的根节点. 创建这样一棵树的方法有自底向上和自顶向下两种方式. 下面介绍一下如何利用自底向上的方式的构造这样一棵树: 为了便于说明,假…
DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1.核心点:在半径Eps内含有超过MinPts数目的点. 2.边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内的点. 3.噪音点:既不是核心点也不是边界点的点. 如下图所示:图中黄色的点为边界点,因为在半径Eps内,它领域内的点不超过MinPts个,我们这里设置的MinPts为5…
1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用户是否喜欢电子产品 常用方法: K近邻.朴素贝叶斯.决策树.SVM 2 回归 回归技术预测的数据对象是连续值.例如温度变化或时间变化.包括一元回归和多元回归,线性回归和非线性回归 常用方法: 线性回归.逻辑回归.岭回归 无监督学习 主要用于知识发现,在历史数据中发现隐藏的模式或内在结构 1 聚类 聚…
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算是机器学习中最为常见的一类算法,在无监督学习中,可以说聚类算法有着举足轻重的地位. 提到无监督学习,不同于前面介绍的有监督学习,无监督学习的数据没有对应的数据标签,我们只能从输入X中去进行一些知识发现或者预处理. 过去在有监督学习中,我们(让机器)通过X去预测Y,而到了无监督学习中,我们(让机器)只…