逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪几个类.通常我们判定一个样本,若我们预测它的确属于这个类的可能性大于50%,则认为它属于这个类.当然具体选择50%还是70%还是其他要看具体情况,这里先默认50%. 线性回归的局限性在分类问题的例子中变得不可靠:这是一个用来预测肿瘤是否呈阴性的模型,当一个肿瘤的尺寸大于一个数,我们就认为这个肿瘤呈阴性.我们现…
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E5%85%AD%E8%AF%BE-%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92-logistic-regression…
逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连续的值 逻辑回归是分类问题   比如肿瘤问题    只有 0 ,1 两种情况 逻辑回归的方程写成 X是特征向量   theta是参数向量    theta转置乘以特征向量 就是参数与特征相乘 g代表逻辑函数     一个常用的s型逻辑函数就是 : 图为: python代码为: 的意义呢     因为…
ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分类的逻辑回归,输入x有两种(科目1与科目2),输出有两种(能进入本大学与不能进入本大学).输入测试样例以已经本文最前面贴出分别有两组数据. 我们在进行逻辑回归之前,通常想把数据数据更为直观的显示出来,那么我们根据输入样例绘制图像. function plotData(X, y) %PLOTDATA…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交…
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问题:预测一个连续的输出. 分类问题:离散输出,比如二分类问题输出0或1. 逻辑回归常用于垃圾邮件分类,天气预测.疾病判断和广告投放. 一.假设函数 因为是一个分类问题,所以我们希望有一个假设函数,使得: 而sigmoid 函数可以很好的满足这个性质: 故假设函数: 其实逻辑回归为什么要用sigmoi…
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 到 1 之间(不包括 0 和 1)的概率值,而不是确切地预测结果是 0 还是 1. 1- 计算概率 许多问题需要将概率估算值作为输出.逻辑回归是一种极其高效的概率计算机制,返回的是概率(输出值始终落在 0 和 1 之间).可以通过如下两种方式使用返回的概率: “按原样”:“原样”使用返回的概率(例如…
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行分类出现了错误:而且线性回归计算的结果往往会远小于0或者远大于1,这对于0,1分类变得很奇怪.可见线性回归并不适用与分类.下面介绍的逻辑回归的结果总是在[0,1],适用于分类,其实逻辑回归是一种分类算法. 2 假设函数Hypothesis Representation 逻辑回归假设函数为: 其中 是…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(−∞,+∞),而有的时候,目标值的范围是[0,1](可…
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上是一种分类方法,在实际应用中,逻辑回归可以说是应用最广泛的机器学习算法之一 回归问题怎么解决分类问题? 将样本的特征和样本发生的概率联系起来,而概率是一个数.换句话说,我预测的是这个样本发生的概率是多少,所以可以管它叫做回归问题 在许多机器学习算法中,我们都是在追求这样的一个函数 例如我们希望预测一个学生的成…
在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈:之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的. 我们先说二分类问题,我们将一些自变量分为负向类和正向类,那么因变量为0,1:0表示负向类,1表示正向类. 如果用线性回归来讨论分类问题,那么假设输出的结果会大于1,但是我们的假设函数的输出应该是在0,1之间.所以我们把输出结果在…
目录会根据我的学习进度而更新,给自己列一个大纲以系统地看待整个学习过程. 学习资料来源 学习的是Coursera上吴恩达(Andrew Ng)老师的机器学习视频(课程传送门,最近在"最强大脑"上看到他了好激动啊,原来他去做百度大脑了呀),笔记根据此系列视频整理.笔记顺序不一定与原教程一样,希望加入些自己的思考. 同时使用了网上找到的黄海广博士的对于吴大大视频教程的笔记(传送门).因为我一开始看视频没做笔记,现在忘得差不多啦,现在打算写个笔记,重新去看视频再整理太麻烦,网上竟然找到这一神…
线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数.这里给定的数据集取名叫训练集(Training Set).不能所有数据都拿来训练,要留一部分验证模型好不好使,这点以后说.先列举几个几个典型的模型: 最基本的单变量线性回归: 形如h(x)=theta0+theta1*x1 多变量线性回归: 形如h(x)=theta0+theta1*x1+thet…
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们的训练集,这就叫欠拟合(Underfitting),但是如果x的次数太高(两组图的第三张),拟合虽然很好,但是预测能力反而变差了,这就是过拟合(Overfitting). 对于欠拟合,我们可以适当增加特征,比如加入x的多次方.通常这很少发生,发生的多的都是过拟合.那么如何处理过度拟合呢? 1. 丢弃…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Logistic regression 1.逻辑回归 逻辑回归是一种监督学习的分类算法,相比较之前的线性回归算法,差别在于它是一个分类算法,这也意味着y不再是一个连续的值,而是{0,1}的离散值(两类问题的情况下). 当然这依然是一个判别学习算法,所谓判别学习算法,就是我们直接去预测后验 ,或者说直接预测判别函数的算法.当然相对应的生成学习算法,…
从这节算是开始进入“正规”的机器学习了吧,之所以“正规”因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证.这整套的流程是机器学习必经环节.今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning).逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计算出y,这就是回归.而逻辑回归…
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的干扰,条件的描述的不够完全,所以可能不确定正确,还希望得到一个概率,比如有病的概率是80%.也即P(Y|X),对于输入X,产生Y的概率,Y可取两类,1或者0. 推导 Sigmod函数 相当于线性模型的计算结果来逼近真实01标记的对数几率. 他的导数: 对数线性模型 概率P的值域是[0,1],线性函数…
6.1  分类问题 6.2  假说表示 6.3  判定边界 6.4  代价函数 6.5  简化的成本函数和梯度下降 6.6  高级优化 6.7  多类分类:一个对所有 6.1  分类问题 在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误).分类问题的例子有:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈等等. 我们从二元的分类问题开始讨论.       我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class)…
6.1  分类问题 6.2  假说表示 6.3  判定边界 6.4  代价函数 6.5  简化的成本函数和梯度下降 6.6  高级优化 6.7  多类分类:一个对所有 6.1  分类问题 在分类问题中,我们尝试预测的结果是否属于某一个类(例如正确或错误).分类问题的例子有:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈等等. 我们从二元的分类问题开始讨论.       我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class)和…
0. 前言   这学期 Pattern Recognition 课程的 project 之一是手写数字识别,之二是做一个网站验证码的识别(鸭梨不小哇).面包要一口一口吃,先尝试把模式识别的经典问题——手写数字识别做出来吧.这系列博客参考deep learning tutorial ,记录下用以下三种方法的实现过程: Logistic Regression - using Theano for something simple Multilayer perceptron - introductio…
逻辑回归(Logistic Regression) 假设函数(Hypothesis Function) \(h_\theta(x)=g(\theta^Tx)=g(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{\theta^Tx}}\) g函数称为 Sigmoid Function 或 Logistic Function, 它可以使得 \(0 \leq h_\theta (x) \leq 1\). The following image shows us what the…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn逻辑回归官网调参指南 https://scikit-learn.org/stable/modules/generated/sklearn.linear…
class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False…
Regularization:Regularized logistic regression without regularization 当features很多时会出现overfitting现象,图上的cost function是没有使用regularization时的costfunction的计算公式 with regularization 当使用了regularization后,使θ1到n不那么大(因为要使J(θ)最小,θ12+θ22.....θn2->0这时θj要趋向于0),这样可以避免…
6.1 分类问题 在分类问题中,你要预测的变量…
1 二分类( Binary Classification ) 逻辑回归是一个二分类算法.下面是一个二分类的例子,输入一张图片,判断是不是猫. 输入x是64*64*3的像素矩阵,n或者nx代表特征x的数量,y代表标签0/1,m代表训练集的样本总数. 本门课中:X代表所有的输入x,x按列排列,每个x是一个列向量,X的shape是( n, m ). 同理Y也按列排序,shape为( 1, m ). 2 逻辑回归( Logistic Regression ) 给定一个输入x ( 比如图像),你想得到一个…
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第二章逻辑回归,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等 简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用.有时候…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…