关于 Flink 状态与容错机制】的更多相关文章

Flink 作为新一代基于事件流的.真正意义上的流批一体的大数据处理引擎,正在逐渐得到广大开发者们的青睐.就从我自身的视角看,最近也是在数据团队把一些原本由 Flume.SparkStreaming.Storm 编写的流式作业往 Flink 迁移,它们之间的优劣对比本篇暂不讨论. 近期会总结一些 Flink 的使用经验和原理的理解,本篇先谈谈 Flink 中的状态和容错机制,这也是 Flink 核心能力之一,它支撑着 Flink Failover,甚至在较新的版本中,Flink 的 Querya…
Flink系列文章 第01讲:Flink 的应用场景和架构模型 第02讲:Flink 入门程序 WordCount 和 SQL 实现 第03讲:Flink 的编程模型与其他框架比较 第04讲:Flink 常用的 DataSet 和 DataStream API 第05讲:Flink SQL & Table 编程和案例 第06讲:Flink 集群安装部署和 HA 配置 第07讲:Flink 常见核心概念分析 第08讲:Flink 窗口.时间和水印 第09讲:Flink 状态与容错 这一课时我们主要…
摘自Apache官网 一.State的基本概念 什么叫State?搜了一把叫做状态机制.可以用作以下用途.为了保证 at least once, exactly once,Flink引入了State和Checkpoint 某个task/operator某时刻的中间结果 快照(snapshot) 程序一旦crash,恢复用的 机器学习模型的参数 二.Flink中包含的State Keyed State和Opreator State 1.Keyed State基于KeyedStream的状态.这个状…
数据流容错机制 该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------------------------------------------------------------------------- 一.介绍 flink提供了可以一致地恢复数据流应用的状态的容错机制,该机制保证即使在错误发生后,反射回数据流记录的程序的状态操作最终仅执行一次.值得注意的是,该保证可…
本文来自8月11日在北京举行的 Flink Meetup会议,分享来自于施晓罡,目前在阿里大数据团队部从事Blink方面的研发,现在主要负责Blink状态管理和容错相关技术的研发.   本文主要内容如下: 有状态的流数据处理: Flink中的状态接口: 状态管理和容错机制实现: 阿里相关工作介绍: 一.有状态的流数据处理   1.1.什么是有状态的计算      计算任务的结果不仅仅依赖于输入,还依赖于它的当前状态,其实大多数的计算都是有状态的计算. 比如wordcount,给一些word,其计…
本文主要内容如下: 有状态的流数据处理: Flink中的状态接口: 状态管理和容错机制实现: 阿里相关工作介绍: 一.有状态的流数据处理# 1.1.什么是有状态的计算# 计算任务的结果不仅仅依赖于输入,还依赖于它的当前状态,其实大多数的计算都是有状态的计算. 比如wordcount,给一些word,其计算它的count,这是一个很常见的业务场景.count做为输出,在计算的过程中要不断的把输入累加到count上去,那么count就是一个state. 1.2.传统的流计算系统缺少对于程序状态的有效…
简介 Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态. 该机制确保即使出现故障,经过恢复,程序的状态也会回到以前的状态. Flink 主持 at least once 语义 和 exactly once 语义 Flink 通过定期地做 checkpoint 来实现容错 和 恢复, 容错机制不断地生成数据流的快照, 而不会对性能产生太大的影响. 流应用程序的状态存储在一个可配置的地方(例如主节点或HDFS) 如果出现车程序故障(由于机器.网络或软件故障), Flink…
1.概述 Flink支持有状态计算,根据支持得不同状态类型,分别有Keyed State和Operator State.针对状态数据得持久化,Flink提供了Checkpoint机制处理:针对状态数据,Flink提供了不同的状态管理器来管理状态数据,如MemoryStateBackend. 上面Flink的文章中,有引用word count的例子,但是都没有包含状态管理.也就是说,如果一个task在处理过程中挂掉了,那么它在内存中的状态都会丢失,所有的数据都需要重新计算. 从容错和消息处理的语义…
本文是博主阅读Flink官方文档以及<Flink基础教程>后结合自己理解所写,若有表达有误的地方欢迎大伙留言指出. 1.  前言 流式计算分为有状态和无状态两种情况,所谓状态就是计算过程中的中间值.对于无状态计算,会独立观察每个独立事件,并根据最后一个事件输出结果.什么意思?大白话举例:对于一个流式系统,接受到一系列的数字,当数字大于N则输出,这时候在此之前的数字的值.和等情况,压根不关心,只和最后这个大于N的数字相关,这就是无状态计算.什么是有状态计算了?想求过去一分钟内所有数字的和或者平均…
Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态.该机制确保即使出现故障,程序的状态最终也会反映来自数据流的每条记录(只有一次). 从容错和消息处理的语义上(at least once, exactly once),Flink引入了state和checkpoint. state一般指一个具体的task/operator的状态.而checkpoint则表示了一个Flink Job,在一个特定时刻的一份全局状态快照,即包含了所有task/operator的状态. Flin…
这里将介绍Flink对有状态计算的支持,其中包括状态计算和无状态计算的区别,以及在Flink中支持的不同状态类型,分别有 Keyed State 和 Operator State .另外针对状态数据的持久化,以及整个 Flink 任务的数据一致性保证,Flink 提供了 Checkpoint 机制处理和持久化状态结果数据,随后对状态数据 Flink 提供了不同的状态管理器来管理状态数据,例如: MemoryStateBackend 等. 有状态计算 在Flink架构体系中,有状态计算可以说是Fl…
1.理解State(状态) 1.1.State 对象的状态 Flink中的状态:一般指一个具体的task/operator某时刻在内存中的状态(例如某属性的值) 注意:State和Checkpointing 不要搞混 checkpoint则表示了一个Flink Job,在一个特定时刻的一份全状态快照,即包含一个job下所有task/operator 某时刻的状态 状态的作用 增量计算 聚合操作 机器学习训练模式 等等 容错 Job故障重启 升级 1.2.状态的分类 1.Operator Stat…
本文主要运行到Flink以下内容 检查点机制(CheckPoint) 状态管理器(StateBackend) 状态周期(StateTtlConfig) 关系 首先要将state和checkpoint概念区分开,可以理解为checkpoint是要把state数据持久化存储起来,checkpoint默认情况下会存储在JoManager的内存中.checkpoint表示一个Flink job在一个特定时刻的一份全局状态快照,方便在任务失败的情况下数据的恢复.在启动 CheckPoint 机制时,状态会…
目录 一.前言 二.状态类型 2.1.Keyed State 2.2.Operator State 三.状态横向扩展 四.检查点机制 4.1.开启检查点 (checkpoint) 4.2.保存点机制 (Savepoints) 五.状态后端 5.1.状态管理器分类 5.2.配置方式 六.状态一致性 6.1.端到端(end-to-end) 6.2.Flink+Kafka 实现端到端的 exactly-once语义 6.3.Kafka幂等性和事务 幂等性 事务 6.4 两阶段提交协议 七.链接文档 一…
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理保障机制) Daemon Fault Tolerance(守护线程容错机制) 当worker死掉时会发生什么? 当node死掉时会发生什么? 当Nimbus或者Supervisor daemons死掉时会发生什么? Nimbus是否会出现单独失败的状况? Storm怎样保证数据处理? 理解Storm…
Storm学习笔记 - 消息容错机制 文章来自「随笔」 http://jsynk.cn/blog/articles/153.html 1. Storm消息容错机制概念 一个提供了可靠的处理机制的spout需要记录自己emit(发射)的tuple(消息元祖),当下游bolt处理tuple或者子tuple失败时spout能够重新发射. Storm通过调用Spout的nextTuple()发送一个tuple.为实现可靠的消息处理,首先要给每个发出的tuple带上唯一的ID,并且将ID作为参数传递给So…
一.前述 Storm容错机制相比其他的大数据组件做的非常不错. 二.具体原因 结合Storm集群架构图: 我们的程序提交流程如下:   其中各个组件的作用如下: Nimbus资源调度任务分配接收jar包 Supervisor接收nimbus分配的任务启动.停止自己管理的worker进程(当前supervisor上worker数量由配置文件设定) Worker运行具体处理运算组件的进程(每个Worker对应执行一个Topology的子集)worker任务类型,即spout任务.bolt任务两种启动…
storm消息容错机制(ack-fail) 1.介绍 在storm中,可靠的信息处理机制是从spout开始的. 一个提供了可靠的处理机制的spout需要记录他发射出去的tuple,当下游bolt处理tuple或者子tuple失败时spout能够重新发射. Storm通过调用Spout的nextTuple()发送一个tuple.为实现可靠的消息处理,首先要给每个发出的tuple带上唯一的ID,并且将ID作为参数传递给SpoutOutputCollector的emit()方法:collector.e…
引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源. 因此,Spark选择记录更新的方式.但是,如果更新粒度太细太多,那么记录更新成本也不低.因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息…
写在前面的话:读书破万卷,编码如有神-------------------------------------------------------------------- 参考内容: <Elasticsearch顶尖高手系列-快速入门篇>,中华石杉 -------------------------------------------------------------------- 主要内容包括: 横向扩容 容错机制 ------------------------------------…
http://blog.csdn.net/hongweigg/article/details/52925920 http://m.blog.csdn.net/article/details?id=51137364 <dubbo:reference cluster="failfast" /> 常见容错机制:failover ,failsafe,failfase ,failback,forking,来源于阿里的定义. Failover 失败自动切换 当出现失败,重试其它服务器,…
        众所周知,flink是有状态的计算.所以学习flink不可不知状态.         正好最近公司有个需求,要用到flink的状态计算,需求是这样的,收集数据库新增的数据.         听起来很简单对吧?起初我也这么认为,现在发现,这尼玛就是变相的动态读取啊. 因为数据是一直在增加的,你需要记录这次收集的结果,用于下一次的运算,所以要用到状态计算. 废话不多说,直接上干货. 关于什么是有状态的flink计算,官方给出的回答是这样的:在flink程序内部存储计算产生的中间结果,…
Elasticsearch的基础分布式架构 Elasticsearch对复杂分布式机制的透明隐藏特性 Elasticsearch是一套分布式系统,分布式是为了应对大数据量. Elasticsearch隐藏了复杂的分布式机制: 分片:我们之前随随便便就将一些document插入到es集群中去了,我们没有关心过数据是如何进行分配的.数据到哪个shard中去了. 集群发现机制(cluster discovery):如果启动一个新的es进程,那么这个es进程会作为一个node并且发现es集群,然后自动加…
熟练掌握Nginx负载均衡的使用对运维人员来说是极其重要的!下面针对Nignx负载均衡upstream容错机制的使用做一梳理性说明: 一.nginx的upstream容错 1)nginx 判断节点失效状态Nginx默认判断失败节点状态以connect refuse和time out状态为准,不以HTTP错误状态进行判断失败,因为HTTP只要能返回状态说明该节点还可以正常连接,所以nginx判断其还是存活状态:除非添加了proxy_next_upstream指令设置对404.502.503.504…
Resilience4j是一个轻量级.易于使用的容错库,其灵感来自Netflix Hystrix,但专为Java 8和函数式编程设计.轻量级,因为库只使用Vavr,它没有任何其他外部库依赖项.相比之下,Netflix Hystrix对Archaius有一个编译依赖关系,Archaius有更多的外部库依赖关系,如Guava和Apache Commons. Resilience4j提供高阶函数(decorators)来增强任何功能接口.lambda表达式或方法引用,包括断路器.速率限制器.重试或舱壁…
本文主要介绍福布湿在flink实时流处理中,state使用的一些经验和心得.本文默认围观的大神已经对flink有一定了解,如果围观过程中发现了有疑问的地方,欢迎在评论区留言. 1. 状态的类别 1.1 从数据角度看,flink中的状态分为2种: KeyedState 在按key分区的DataStream中,每个key拥有一个自己的state,换句话说,这个state能得到这个key所有的数据. 结合以上的描述,不难得出以下结论,KeyState只能在KeyedStream上使用. Operate…
[源码解析] 并行分布式框架 Celery 之 容错机制 目录 [源码解析] 并行分布式框架 Celery 之 容错机制 0x00 摘要 0x01 概述 1.1 错误种类 1.2 失败维度 1.3 应对手段 0x02 Worker ---> Broker 通路失效 2.1 Retry 2.1.1 Retry in Celery 2.1.2 Retry in Kombu 2.1.3 Autoretry in Kombu 2.2 Failover 2.2.1 Failover in Celery 2…
目录 1.Fail-Over:故障转移 2.Fail-Fast:快速失败 3.Fail-Back:失效自动恢复 4.Fail-Safe:失效安全 5.Forking:并行调用多个服务 6.Broadcast:广播调用 参考资料 版权声明 1.Fail-Over:故障转移 Fail-Over 意思是"故障转移,失败自动切换",是一种备份操作模式. 它的主要思路是:主要组件出现异常时,将其功能转移到具有同样功能的备份组件上. 要点在于有主有备,且主发生故障时,可将备切换为主.比如 HDFS…
1 ElasticSearch分布式基础 1.1 ES分布式机制 分布式机制:Elasticsearch是一套分布式的系统,分布式是为了应对大数据量.它的特性就是对复杂的分布式机制隐藏掉. 分片机制:数据存储到哪个分片,副本数据写入另外分片. 集群发现机制:新启动es实例,会自动加入集群. shard负载均衡:大量数据写入及查询,es会将数据平均分配.举例,假设现在有3个节点,总共有25个shard要分配到3个节点上去,es会自动进行均匀分配,以保持每个节点的均衡的读写负载请求. shard副本…
RDD的容错机制 RDD实现了基于Lineage的容错机制.RDD的转换关系,构成了compute chain,可以把这个compute chain认为是RDD之间演化的Lineage.在部分计算结果丢失时,只需要根据这个Lineage重算即可. 图1中,假如RDD2所在的计算作业先计算的话,那么计算完成后RDD1的结果就会被缓存起来.缓存起来的结果会被后续的计算使用.图中的示意是说RDD1的Partition2缓存丢失.如果现在计算RDD3所在的作业,那么它所依赖的Partition0.1.3…