No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如有新的数据加入,需要判断这个新的数据属于数据集中的哪一类 我们添加一个新的数据,重新绘制散点图 No.6. kNN的实现过程——计算x到训练数据集中每个点的距离 No.7. kNN的实现过程——使用argsort来获取距离x由近到远的点的索引组成的向量,进行保存 No.8. kNN的实现过程——指定…
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更好的体验. 本文内容介绍机器学习的K近邻算法,用它处理分类问题.分类问题的目标是利用采集到的已经经过分类处理的数据来预测新数据属于何种类别. K近邻算法 K近邻算法对给定的某个新数据,让它与采集到的样本数据点分别进行比较,从中选择最相似的K个点,然后统计这K个点中出现的各个类别的频数,并判定频数最高…
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类决策规则 3.2 维数诅咒 四.k近邻算法的拓展 4.1 限定半径k近邻算法 4.2 最近质心算法 五.k近邻算法流程 5.1 输入 5.2 输出 5.3 流程 六.k近邻算法优缺点 6.1 优点 6.2 缺点 七.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.…
k 近邻算法是一种基本分类与回归方法.我现在只是想讨论分类问题中的k近邻法.k近邻算法的输入为实例的特征向量,对应于特征空间的点,输出的为实例的类别.k邻近法假设给定一个训练数据集,其中实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测.下面主要叙述k近邻算法,k近邻算法的模型和三个基本要素(距离度量.k值的选择.分类决策规则) k近邻算法 k近邻算法简单.直观:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最近邻的k个实例,这k个实例…
C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的子集.我想这应该是一个有关机器学习的系列文章,我会不定期更新文章,希望喜欢机器学习的朋友不宁赐教. 本系列特别之处是与一些实例相结合来系统的讲解有关机器学习的各种算法,由于能力和时间有限,不会向诸如Simon Haykin<<NEURAL NETWORKS>>等大块头详细的讲解某一个领…
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中很多细节问题 更完整的刻画机器学习应用的流程 import numpy as np import matplotlib.pyplot as plt 实现我们自己的 kNN 创建简单测试用例 raw_data_X = [[3.393533211, 2.331273381], [3.110073483,…
KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k,X_train,y_train,x): assert 1<=k<X_train.shape[0],"k must be valid" assert X_train.shape[0] == y_train.shape[0],\ "the size of X_train…
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k 近邻算法的输入为实例的特征向量,对应于特征空间的点:输出为实例的类别,可以取多类.k 近邻算法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预测.因此,k近邻算法不具有显式的学习过程. k 近邻算法实际上利用训练数据集对…
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性. 数据预备,这里使用random函数生成10*2的矩阵作为两列特征值,1个10个元素数组作为类别值 import numpy as npimport ma…
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集就是模型本身: 思想极度简单: 应用数学知识少(近乎为零): 效果少: 可以解释机械学习算法使用过程中的很多细节问题 更完整的刻画机械学习应用的流程: 2)思想: 根本思想:两个样本,如果它们的特征足够相似,它们就有更高的概率属于同一个类别: 问题:根据现有训练数据集,判断新的样本属于哪种类型: 方…