该系列来自于我<人工智能>课程回顾总结,以及实验的一部分进行了总结学习机 垃圾分类是有监督的学习分类最经典的案例,本文首先回顾了概率论的基本知识.则以及朴素贝叶斯模型的思想.最后给出了垃圾邮件分类在Matlab中用朴素贝叶斯模型的实现 1.概率 1.1 条件概率 定义:事件B发生的情况下,事件A发生的概率记作条件概率P(A|B)P(A|B) P(A|B)=P(A∧B)P(B) P(A|B)=\frac{P(A\land B)}{P(B)} 条件概率也叫后验概率.无条件概率也叫先验概率(在没有不…
Atitti 文本分类  以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案 1.1. 七.什么是贝叶斯过滤器?1 1.2. 八.建立历史资料库2 1.3. 十.联合概率的计算3 1.4. 十一.最终的计算公式3 1.5. .这时我们还需要一个用于比较的门槛值.Paul Graham的门槛值是0.9,概率大于0.9,4 1.1. 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法&quo…
(一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多种扩展,一种是在上一篇笔记中已经提到的每个分量的多值化,即将p(xi|y)由伯努利分布扩展到多项式分布:还有一种在上一篇笔记中也已经提到,即将连续变量值离散化.本文将要介绍一种与多元伯努利事件模型有较大区别的NB模型,即多项式事件模型(Multinomial Event Model,一下简称NB-M…
http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑的表示. 随机变量的独立性 [PGM:概率论基础知识:独立性性质的利用] 条件参数化方法 Note: P(I), P(S | i0), P(S | i1)都是二项式分布,都只需要一个参数. 皮皮blog 朴素贝叶斯模型naive Bayes 朴素贝叶斯模型的学生示例 {这个示例很好的阐述了什么是朴素…
一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模…
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =…
模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\}\).\(\textbf{X}\)为输入空间上的随机向量,其取值为\(\textbf{x}\),满足\(\textbf{x} \in \mathcal{X}\):\(Y\)为输出空间上的随机变量,设其取值为\(y\),满足\(y \in \mathcal{Y}\).我们将容量为\(m\)的训练样本…
#1.使用朴素贝叶斯模型对iris数据集进行花分类 #尝试使用3种不同类型的朴素贝叶斯: #高斯分布型,多项式型,伯努利型 from sklearn import datasets iris=datasets.load_iris() from sklearn.naive_bayes import GaussianNB #高斯分布型 gnb=GaussianNB() pred=gnb.fit(iris.data,iris.target) y_pred=gnb.predict(iris.data)…
朴素贝叶斯主要用于文本分类.文本分类常见三大算法:KNN.朴素贝叶斯.支持向量机SVM. 一.贝叶斯定理 贝叶斯公式思想:利用已知值来估计未知概率.已知某条件概率,如何得到两个事件交换后的概率,也就是已知P(A|B)的情况下如何求得P(B|A). 条件概率:P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率.基本求解公式: 现实中通常遇到这种情况:可以很容易直接得出P(A|B),而P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯公式就是干这个用…
目录 朴素贝叶斯分类(NBC) 程序简介 分类流程 字典(dict)构造:用于jieba分词和槽值替换 数据集构建 代码分析 另外:点击右下角魔法阵上的[显示目录],可以导航~~ 朴素贝叶斯分类(NBC) 这篇博客的重点不在于朴素贝叶斯分类的原理,而在于怎么用朴素贝叶斯分类器解决实际问题.所以这边我就简单介绍以下我们使用的模型. NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单.贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类.它假设特征条件之间相互独立,先…
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立. 条件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 贝叶斯公式可以写成: \[p(y_i|x) = \frac{p(x|y_i)p(y_i)}{p(x)} \] 如果A和B相对于C是条件独立的,那么满足\(P(A|C) = P(A|B,C)\). 如果样本的两个特征\(x_1\)\(x_2\)相对于y条件独…
贝叶斯推断及其互联网应用(一):定理简介 - 阮一峰的网络日志http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html 贝叶斯推断及其互联网应用(二):过滤垃圾邮件 - 阮一峰的网络日志http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_two.html 贝叶斯推断及其互联网应用(三):拼写检查 - 阮一峰的网络日志http://www.…
1.(1)多项式 from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB#贝叶斯 gnb = GaussianNB() pred = gnb.fit(iris.data,iris.target) y_pred = pred.predict(iris.data)#预测 print(iris.data.shape[0],(iris.target!=y_pr…
# 读取数数据, 查看数据结构 df_raw <- read.csv("sms_spam.csv", stringsAsFactors=F) str(df_raw) length(df_raw$type) # 将数据分为特征值矩阵 X 和 类标向量y 两部分,将 y 换为因子 X <- df_raw$text y <- factor(df_raw$type) length(y) # 查看类标向量 y 的结构和组成 str(y) table(y) # 安装和加载文本挖掘…
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生的条件概率 P(A), P(B) – 独立事件A和独立事件B的边缘概率 顺便提一下,上式中的分母P(B)可以根据全概率公式分解为: Bayesian inferenc(贝叶斯推断) 贝叶斯定理的许多应用之一就是…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数,要么是条件分布.但是朴素贝叶斯却是生成方法,该算法原理简单,也易于实现. 1,基本概念 朴素贝叶斯:贝叶斯分类时一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.而朴素贝叶斯分类时贝叶斯分类中…
前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾短信进行过滤,在最后对分类的错误率进行了计算. 与决策树分类和k近邻分类算法不同,贝叶斯分类主要借助概率论的知识来通过比较提供的数据属于每个类型的条件概率, 将他们分别计算出来然后预测具有最大条件概率的那个类别是最后的类别.当然样本越多我们统计的不同类 型的特征值分布就越准确,使用此分布进行预测则会更加准确.…
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM).        和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率.同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单.        理论上,N…
1.朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法, 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM) 2.朴素贝叶斯公式 P(B|A)的意思是在A事件的情况下,发生B事件的概率. 3.朴素贝叶斯模型 a是独立的特征属性集合: 用来计算不同的独立特征的条件概率…
目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布,高斯分布) Python代码(sklearn库) 先验概率与后验概率 引例 想象有 A.B.C 三个不透明的碗倒扣在桌面上,已知其中有(且仅有)一个瓷碗下面盖住一个鸡蛋.此时请问,鸡蛋在 A 碗下面的概率是多少?答曰 1/3. 现在发生一件事:有人揭开了 C 碗,发现 C 碗下面没有蛋.此时再问:鸡…
朴素贝叶斯 朴素贝叶斯分类器的构造基础是贝叶斯理论.采用概率模型来表述,定义x=<x1,x2,...,xn>为某一n维特征向量,y∈{c1,c2,...ck}为该特征向量x所有k种可能的类别,记 P(y=ci|x)为特征向量x属于类别ci的概率.贝叶斯原理: P(y|x)=P(x|y)P(y)/P(x) #代码1:读取20类新闻文本的数据细节  #从sklearn.datasets里导入新闻数据抓取器fetch_20newsgroups from sklearn.datasets import…
目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶斯代码(Spark Python) 代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1 # -*-coding=utf-8 -*- from pyspark import SparkConf, SparkContext sc = SparkContext('…
https://blog.csdn.net/li8zi8fa/article/details/76176597 朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤.该算法虽然简单,但是由于笔者不常用,总是看过即忘,这是写这篇博文的初衷.当然,更大的动力来在于跟大家交流,有论述不妥的地方欢迎指正. 1.算法思想——基于概率的预测 逻辑回归通过拟合曲线(或者学习超平面)实现分类,决策树通过寻找最佳划分特征进而学习…
朴素贝叶斯(Naive Bayesian)是一种基于贝叶斯定理和特征条件独立假设的分类方法,它是基于概率论的一种有监督学习方法,被广泛应用于自然语言处理,并在机器学习领域中占据了非常重要的地位.在之前做过的一个项目中,就用到了朴素贝叶斯分类器,将它应用于情感词的分析处理,并取得了不错的效果,本文我们就来介绍一下朴素贝叶斯分类的理论基础和它的实际使用. 在学习朴素贝叶斯分类以及正式开始情感词分析之前,我们首先需要了解一下贝叶斯定理的数学基础. 贝叶斯定理 贝叶斯定理是关于随机事件A和B的条件概率的…
目录 scikit-learn库之朴素贝叶斯 一.MultinomialNB 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 属性 1.5 方法 二.GaussianNB 三.Bernoulli 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ scikit-learn库之朴素贝叶斯 在scikit-learn库中朴素贝叶斯由于数据分布的不同,主要分为以下三种…
1.朴素贝叶斯模型 朴素贝叶斯分类器是一种有监督算法,并且是一种生成模型,简单易于实现,且效果也不错,需要注意,朴素贝叶斯是一种线性模型,他是是基于贝叶斯定理的算法,贝叶斯定理的形式如下: \[P(Y|X) = \frac{P(X,Y)}{P(X)} = \frac{P(Y) \cdot P(X|Y)}{P(X)}\] 朴素贝叶斯是这样执行的,假设 $X$ 为数据的特征 其中每一维度均可看做一个随机变量,即 $X_1= x_1,X_2=x_2,...,X_n = x_n$ ,$Y = y_1,.…
华电北风吹 日期:2015/12/12 朴素贝叶斯算法和高斯判别分析一样同属于生成模型.但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立. 一.朴素贝叶斯模型 朴素贝叶斯算法通过训练数据集学习联合概率分布p(x,y),其中x=(x1,x2,...,xn)∈Rn,y∈R.详细的对于K分类问题就是须要学习一个类别的先验概率分布p(y=ck),k=1,2,...,K和每一个类别下的条件概率分布(如式1-1) p(x|y)=p(x1,x2,...,xn|y)(1-1) 因为朴素贝叶斯算…
一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就是这种关系的陈述.其中,L(A|B)表示在B发生的前提下,A发生的概率.L表示要取对数的意思. 关键词解释: 1.p(A),p(B)表示A,B发生的概率,也称先验概率或边缘概率. 2.p(B|A)表示在A发生的前提下,B发生的概率,也称后验概率. 基本公式:p(A|B) = p(AB)/p(B) 图…
朴素贝叶斯法 首先训练朴素贝叶斯模型,对应算法4.1(1),分别计算先验概率及条件概率,分别存在字典priorP和condP中(初始化函数中定义).其中,计算一个向量各元素频率的操作反复出现,定义为count函数. # 初始化函数定义了先验概率和条件概率字典,并训练模型 def __init__(self, data, label): self.priorP = {} self.condP = {} self.train(data, label) count函数,输入一个向量,输出一个字典,包含…