BZOJ1257(数论知识)】的更多相关文章

上期为大家介绍了目前常见加密算法,相信阅读过的同学们对目前的加密算法也算是有了一个大概的了解.如果你对这些解密算法概念及特点还不是很清晰的话,昌昌非常推荐大家可以看看HTTPS的加密通信原理,因为HTTPS加密通信使用了目前主要的三种加密算法,大家可以从中体会到各种加密算法的优缺点. 一.目前常见加密算法简介 二.RSA算法介绍及数论知识介绍 三.RSA加解密过程及公式论证 二.RSA算法介绍及数论知识介绍 如果上期(目前常见加密算法简介)算是天安门前的话,那今天的内容就算是正式通过天安门进入故…
感觉做法很神奇……想不到啊qwq 题目: Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 Input 输入仅一行,包含两个整数n, k. 1<=n ,k<=10^9 Output 输出仅一行,即j(n, k). Sa…
1.快速幂 计算a^b的快速算法,例如,3^5,我们把5写成二进制101,3^5=3^1*1+3^2*2+3^4*1 ll fast(ll a,ll b){ll ans=;,a=mul(a,a)))ans=mul(ans,a);return ans;}//一行快速幂 2.快速乘 当模数较大时,直接乘会爆掉long long,需要快速乘法. 即用浮点计算倍数,做差相当于计算余数模2^63的结果,然后再模一下就好了(因为余数不超过long long) typedef long long ll; ll…
这些东西大部分之前都学过了啊qwq zhx大概也知道我们之前跟着他学过这些了qwq,所以: 先讲新的东西qwq:(意思就是先讲我们没有学过的东西) 进制转换 10=23+21=1010(2) =32+30=101(3) 进制转换的两种操作: 1.10进制=>k进制 短除法: 55(10): 55/3=18……1 18/3=6…… 0 6/3=2…… 0 2/3=0…… 2 55(10)=2001(3) 2.k进制=>10进制 k进制数x,n~0 xnxn-1xn-2……x0(k) = xn*k…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ C(n,n/i),i|n })%P,即G^M %P,根据费马小定理G^(P-1) ≡1(mod P),我们要求的就是G^(M%(P-1)) %P. 考虑C(n,i)%(P-1),由于n i P都比较大所以不好求组合数.发现P-1可以分解质因数为2,3,4679,35617,将C(n,i)对每一个质…
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数. Input 输入包含多组数据. 第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同). 以下行每行包含三个正整数y,z,p,描述一个询问. Output 对于每个询问,输出一行答案.对…
1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2,...,axk一一对应 结论四:aφ(n)≡1(mod n) 计算:φ(m)=m*(1-1/p1)*......*(1-1/pi) Back to here 请证明:如果n为素数,取a<n,设n-1=d*2r,则要么ad≡1(mod n)要么存在0<=i<r,使得ad*2^t≡-1(mod…
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据,看看有没有结论. 2 3 4 5 6 7 8 9 10 11 12 (人数) 1 2 2 3 3 3 4 4 4 4 4 (比赛数) 发现比赛数的增长成斐波那契.维护一个前缀和即可. #include <bits/stdc++.h> #define ll long long using names…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1951 分析: 练习数论知识的好题,涉及到费马小定理.lucas定理.求逆元…
昨天晚上写的一题 结果USACO一直挂中 今天交了下 有一点点的数论知识  背包很好想 就是不好确定上界 官方题解: 这是一个背包问题.一般使用动态规划求解. 一种具体的实现是:用一个线性表储存所有的节点是否可以相加得到的状态,然后每次可以通过一个可以相加得到的节点,通过加上一个输入的数求出新的可以相加得到的点.复杂度是O(N×结果). 但是可以证明结果不会超过最大的两个数的最小公倍数(如果有的话).参见数论.所以复杂度也是O(Na2),完全可以接受了. 判断无限解可以按上面的方法,另外也可以算…
这道题初看确实没什么思路,感觉之前的数论知识都用不上,只好自己找规律首先当n>=k 这部分是很容易直接算出的下面我们先来尝试这穷举i,不难发现当穷举i时,总存在一段连续的除数,k div i=p定值设这段是i~j,则这部分的的余数和signma(k-p*q) (i<=q<=j) 即为k*(j-i+1)-p*(i+j)*(j-i+1)/2由于随着i的增大,k div i逐渐变小,是接近单调的因此这样一段连续的除数我们可以通过二分确定其范围这样就可以AC了 var ans:int64; n,…
Maximal GCD 题目链接:http://codeforces.com/problemset/problem/735/D ——每天在线,欢迎留言谈论. 题目大意: 给你一个n(2≤n≤2e9) 代表一个人的收入. 他需要交税,规则:交税金额为n的最大公约数(本身不算) 他想通过把钱分成几份,然后分别交税,达到交税最少. 知识点: 哥德巴赫猜想:①如果一个数为偶数,那么可以拆成两个质数相加 ②如果一个奇数 (n-2)为质数那么他也可以拆成两个质数相加(2+(n-2)) ③其他的奇数 可以拆成…
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分解为素因子的乘积,形如: 则显而易见的有一下结论: 相乘,得: 得证 几种求gcd的算法 欧几里得算法(辗转相除法) 辗转相减法(优化:stein_gcd) 欧几里得算法 基于事实: 实现: int gcd(int a, int b){ ) ? a : gcd( b , a % b) ; } 简短而…
前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且一旦模板有更新,我就直接在博客上改了,所以记得常来看看(.・ω・)) 废话说完了,直接进入正题ヾ(=^▽^=)ノ 素数,又叫质数,定义是除了1和它本身以外不再有其他的因数 我们通过这个定义,可以写如下程序判断一个数是不是质数 bool prime(int x){//判断x是不是质数,是返回true,…
Problem Description Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known integers. We call f(x) 0 (mod m) congruence equation. If m is a composite, we can factor m into powers of primes and solve every such single equation after wh…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5152 ,线段树区间更新 + 点更新 + 数论知识(数论是重点QAQ),好题值得一做. BestCoder Round #24的C题,一道神题,不得不说,出题人的数论学的很好,很多人都没想到2333333不是素数的问题,当时全场爆零.我今天下午开始研究这道题,后来看了好久的标程才懂,惭愧. 一共有两个操作一个询问:1.询问[l , r]区间里的值的和; 2.将点x的值a[x]赋为2a[x]; 3.将区…
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M!的倍数 所以只要求1到M!中与M!互质的数的个数,在乘上N!/M! 可以理解为每一块M!有这么多,然而N!中有很多块M!,所以乘上N!/M! 然后根据phifac[n] = phi[n!] = n!(1-1/p1)(1-1/p2)......(1-1/k)的定义可以得出 当n为质数的时候 phifac[n]…
大概就是求这个: $$G^\sum_{k|N} C_{n}^{k}$$ 显然只要把后面的$\sum_{k|N}C_{n}^{k}$求出来就好了 几个要用的定理: 欧拉定理的推论:(a和n互质) $$a^b \equiv a^{b \mod \varphi(n)} \mod n$$ 中国剩余定理: $$x_0=\sum \frac{M}{m_i}*t_i*a_i$$ 卢卡斯定理: $$C_{n}^{m} \equiv C_{n \mod mod}^{m \mod mod}*C_{\frac{n}{…
https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且一旦模板有更新,我就直接在博客上改了,所以记得常来看看(.・ω・)) 废话说完了,直接进入正题ヾ(=^▽^=)ノ 素数,又叫质数,定义是除了1和它本身以外不再有其他的因数 我们通过这个定义,可以写如下程序…
摘自:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html(可到原网址查看秘钥生成原理) RSA算法原理(一) 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 一.一点历史 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行加密: (2)乙方使用同一种规则,对信息…
[转]原博文地址:https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.09.md 完美洗牌算法 题目详情 有个长度为2n的数组{a1,a2,a3,...,an,b1,b2,b3,...,bn},希望排序后{a1,b1,a2,b2,....,an,bn},请考虑有无时间复杂度o(n),空间复杂度0(1)的解法. 题目来源:此题是去年2013年UC的校招笔试题,看似简单,按照题目所要…
在这个系列的第十六章节中Windows phone应用开发[16]-数据加密 中曾详细讲解过windows phone 常用的MD5,HMAC_MD5,DES,TripleDES[3DES] 数据加密的解决方案.本篇作为windows phone 数据加密一个弥补篇幅.将专门来讲解windows phone rsa数据加密存在问题解决方案以及和其他平台[Java]互通存在的问题. RSA算法起源与现状 如果你关注过近现代密码学的发展.你一定不会否认RSA的出现的重要意义. [上图:德国的洛伦兹密…
因为最近的生活太颓废总是不做题而被老师D了一番, 所以今天晚上到bzoj上去刷了几道水题.....   bzoj 4320: ShangHai2006 Homework 题目大意 维护一个支持两个操作的集合: 1) 插入一个数x 2) 询问集合中所有数中 mod x 最小是多少 解题思路 似乎log家族没有什么好的办法解决这道题? 考虑 sqrt() 的方法. 当询问 x <= sqrt(m) 的时候, 直接存一下就可以了. 当询问 x > sqrt(m) 的时候,把n分成 n / x 块,…
------------------ rsa 加密与解密 ----------------------------- 数论知识的实际应用: rsa加密 把问题归结为对数字的加密. 被加密的数字为明文. RSA加密通过公钥对明文进行加密, 得到密文. 网络中传输的都是密文.接收方收到密文, 必须有私钥才能把密文解开.即RSA解密算法通过私钥对密文进行解密. 公钥都是公开的. 私钥只有指定接收方才有. 私钥是根据公钥取的一个数,要想猜出这个数的难度非常大. 看如何生成公钥: 取两个互质的大素数,分别…
来自GDOI2007,原题已不可考-- 又自己做出来了好开心,找特殊性是个关键的切入点 原题: 这天周航遇到了靳泽旭. 周航:"我是天才!" 靳泽旭:"你为什么是天才?" 周航:"你随便告诉我一个数字,我立即可以算出它所有约数之和,以及所有约数的倒数和!" 靳泽旭:"换过来,我告诉你一个数的所有约数(包括1和该数本身)的和以及约数的倒数之和,你是天才你应该立即能推出这个数是什么!" 周航被难倒了! 现在,这个难倒了天才的题目就…
转载自http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的思维游戏中.直到计算机诞生之后,几千年来的数论研究成果突然有了实际的应用,这个过程可以说是最为激动人心的数学话题之一.最近我在<程序员>杂志上连载了<跨越千年的 RSA 算法>,但受篇幅限制,只有一万字左右的内容.其实,从数论到 RSA 算法,里面的数学之美哪里是一万字能扯完的?在写作…
这是一篇因骂战而起的博文,GarbageMan 在该文章回复中不仅对我进行了侮辱,还涉及了我的母校,特写此文用理性的分析和实验予以回击. 在此也劝告 GarbageMan,没什么本事就别在那叫嚣了,还写什么<C语言初学者代码中的常见错误与瑕疵>,误人子弟. 完整的实验代码点这里下载.使用方法见实验环境一节. 本文需要一些基本的数论知识.本人对于数论没有详细而深入的研究,部分表述有可能不严谨或不正确,如有发现,还请指正. 预备知识 素数,又称质数,指除了 1 和该整数自身外,无法被其他正整数整除…
  作者: 阮一峰 日期: 2013年7月 4日 上一次,我介绍了一些数论知识. 有了这些知识,我们就可以看懂RSA算法.这是目前地球上最重要的加密算法. 六.密钥生成的步骤 我们通过一个例子,来理解RSA算法.假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢? 第一步,随机选择两个不相等的质数p和q. 爱丽丝选择了61和53.(实际应用中,这两个质数越大,就越难破解.) 第二步,计算p和q的乘积n. 爱丽丝就把61和53相乘. n = 61×53 = 3233 n的长度就是密钥长度.3…
最近用到了RSA加密算法,虽然有现成的,但是想看看它的原理,翻到此文,感觉写得很好,通俗易懂,转了.   作者: 阮一峰 日期: 2013年6月27日 如果你问我,哪一种算法最重要? 我可能会回答"公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 一.一点历史 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息…
Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj3295) (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法: (1)图的深度优先遍历和广度优先遍历. (2)最短路…