今天在看网上的视频学习深度学习的时候,用到了CIFAR-10数据集.当我兴高采烈的运行代码时,却发现了一些错误: # -*- coding: utf-8 -*- import pickle as p import numpy as np import os def load_CIFAR_batch(filename): """ 载入cifar数据集的一个batch """ with open(filename, 'r') as f: datadi…
DNN(深度神经网络算法)现在是AI社区的流行词.最近,DNN 在许多数据科学竞赛/Kaggle 竞赛中获得了多次冠军. 自从 1962 年 Rosenblat 提出感知机(Perceptron)以来,DNN 的概念就已经出现了,而自 Rumelhart.Hinton 和 Williams 在 1986 年发现了梯度下降算法后,DNN 的概念就变得可行了.直到最近 DNN 才成为全世界 AI/ML 爱好者和工程师的最爱. 主要原因在于现代计算能力的可用性,如 GPU 和 TensorFlow 等…
注:本文全原创,作者:Noah Zhang  (http://www.cnblogs.com/noahzn/) 这两天在安装Python的深度学习库:Theano.尝试了好多遍,CMake.MinGW.BLAS.APLACK等等都装了试着自己编译,网上教程也搜了一大堆,但都没成功.昨晚回家清理干净电脑,又小心翼翼地装了一遍,成功,今天来公司又装了一遍,也成功,现把步骤记录如下: (注:本步骤适用于WIN7 64位操作系统,Python版本为3.4.3 64bit) 1. 请将电脑清理干净.包括之…
CIFAR-10数据集含有6万个32*32的彩色图像,共分为10种类型,由 Alex Krizhevsky, Vinod Nair和 Geoffrey Hinton收集而来.包含50000张训练图片,10000张测试图片 http://www.cs.toronto.edu/~kriz/cifar.html 数据集的数据存在一个10000*3072 的 numpy数组中,单位是uint8s,3072是存储了一个32*32的彩色图像.(3072=1024*3).前1024位是r值,中间1024是g值…
matplotlib :绘图库 seaborn:基于matplotlib的图形可视化包 numpy:函数.矩阵运算库 pandas :基于numpy的结构化数据分析库 首先看一下cmd能不能使用pip(一般安装了python都自带安装pip的),不能就把pip的位置加入环境变量电脑的Path里面. 不过我加了环境变量还是没有用,所以只能进入pip的位置运行.这是我的位置,我是在VS2019上装的python,所以python的目录在VS下面,然后在python目录的scripts下有pip. 这…
#!/usr/bin/env python# -*- coding:utf-8 -*-'''Selenium3+webdriver学习笔记10(元素属性.页面源码)'''from selenium import webdriverfrom selenium.webdriver.common.action_chains import ActionChainsfrom selenium.webdriver.support.select import Selectimport reimport tim…
基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 Keras.MXNet.Tensorflow 都封装了自己的基础数据集,如 MNIST.cifar 等.如果我们要在不同平台使用这些数据集,还需要了解那些框架是如何组织这些数据集的,需要花费一些不必要的时间学习它们的 API.为此,我们为何不创建属于自己的数据集呢?下面我仅仅使用了 Numpy 来…
一.深度学习在小数据集的表现 深度学习在小数据集情况下获得好效果,可以从两个角度去解决: 1.降低偏差,图像平移等操作 2.降低方差,dropout.随机梯度下降 先来看看深度学习在小数据集上表现的具体观点,来源于<撕起来了!谁说数据少就不能用深度学习?这锅俺不背!> 原文:https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/ 1.样本数量少于100个,最好不要使用深度学习 倘若你的样本数量少于100个,最好不要使用…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面几篇文章介绍了MINIST,对这种简单图片的识别,LeNet-5可以达到99%的识别率. CIFAR10是另一个著名的深度学习图像分类识别数据集,比MINIST更复杂,而且是RGB彩色图片. 看看较简单的LeNet-5可以达到多少准确率.网络结构基本和前面MINIST代码中的差不多,主要是输入图片的通道数不同,代码如下: # -*- coding:utf-8 -*- u"""…
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务…