一.C调用Python 1.新建一个Python文件,名称为py_multipy.py: #import numpy as np def multiply(a=1,b=2): print('Function of python called!') print('a:',a) print('b:',b) print('a*b:',a*b) #print('numpy a*b:',np.multiply(a,b)) 2.新建一个C调用文件,名称为call_python.c #include <std…
具体步骤如下: 1.  TFLiteConverter保存模型 修改网络模型代码,将模型通过TFLiteConverter转化成为 TensorFlow Lite FlatBuffer即为.tflite的备份文件.参考官网说明https://tensorflow.google.cn/lite/convert/python_api 这里我选择的模型是tensorflow tutorial里面的mnist代码,原因是比较简单,方便实验.具体路径models-master/tutorials/imag…
tensorflow初次接触记录,我用python写的tensorflow第一个模型 刚用python写的tensorflow机器学习代码,训练60000张手写文字图片,多层神经网络学习拟合17000次,训练完毕耗时1小时,10000张测试图片识别准确率99.17% 模型已经保存了,下一步的学习计划是: 模型调用,手写文字图片实时识别 模型持续学习训练,实时预测 再就是分布式部署,应该就没啥了啊 剩下就是准备业务和业务数据的事情了啊…
翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ 在这篇tensorflow教程中,我会解释: 1) Tensorflow的模型(model)长什么样子? 2) 如何保存tensorflow的模型? 3) 如何恢复一个tensorflow模型来用于预测或者迁移学习? 4) 如何使用预训练好的模型(imported pretrained model…
转载:https://cloud.tencent.com/developer/article/1009979 tensorflow模型的格式通常支持多种,主要有CheckPoint(*.ckpt).GraphDef(*.pb).SavedModel. 1. CheckPoint(*.ckpt) 在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示: 这种格式文件是由 tf.train.Saver() 对象调用 saver.save()…
TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphDef 完整转换器参考 计算节点兼容性 Graph 可视化工具 3 在移动端app,使用TensorFlow Lite模型推理 android IOS Raspberry PI 使用一个TensorFlow Lite 模型在你的移动端app需要受到需要约束:首先,你必须有训练好的模型(预训练/自己训练…
原文地址:搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型 0x00 环境 OS: Ubuntu 1810 x64 Anaconda: 4.6.12 Python: 3.6.8 TensorFlow: 1.13.1 OpenCV: 3.4.1 0x01 基础环境配置 Anaconda 下载地址: Anaconda-4.6.12-Linux 本文中安装位置为 /usr/local/anaconda3 修改默认的 python 版本为 3.6 cond…
该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大的帮助,因此我决定把它记录下来. 原文链接A quick complete tutorial to save and restore Tensorflow models–by ANKIT SACHAN (英文水平有限,有翻译不当的地方请见谅) 在本教程中,我将介绍: - tensorflow模型是什…
TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name="w1-name") w2 = tf.Variable(tf.constant(3.0, shape=[1]), name="w2-name") a = tf.placeholder(dtype=tf.float32, name="a-name")…
使用docker部署模型的好处在于,避免了与繁琐的环境配置打交道.使用docker,不需要手动安装Python,更不需要安装numpy.tensorflow各种包,直接一个docker就包含了全部.docker的方式是如今部署项目的第一选择. 一.docker用法初探 1.安装 docker安装需要两个命令: sudo apt-get install docker sudo apt-get install docker.io 好的学习资料不必远求 docker --help docker run…
参考: TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式 TensorFlow 模型保存与恢复 snpe tensorflow 模型前向传播 保存ckpt  tensorbard查看 ckpt转pb  pb 转snpe dlc 实例 log文件 输入节点 图像高度 图像宽度 图像通道数 input0 6,6,3 输出节点 --out_node add snpe-tensorflow-to-dlc --graph ./simple_snpe_log/model200.…
最近由于要将训练好的模型移植到硬件上,因此需要将TensorFlow转为caffe模型. caffe模型需要两个文件,一个是定义网络结构的prototxt,一个是存储了参数的caffemodel文件.只要生成这两个文件,caffe模型就算转好了. 在模型转换的过程中,我主要参考了https://github.com/lFatality/tensorflow2caffe. 首先根据已有的tensorflow模型定义caffe模型需要的网络结构prototxt文件,这个可以参考一些现有的protot…
一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt"),实际在这个文件目录下会生成4个人文件: checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model.…
在这篇 TensorFlow 教程中,我们将学习如下内容: TensorFlow 模型文件是怎么样的? 如何保存一个 TensorFlow 模型? 如何恢复一个 TensorFlow 模型? 如何使用一个训练好的模型进行修改和微调? 1. TensorFlow 模型文件 在你训练完一个神经网络之后,你可能需要将这个模型保存下来,在后续实验中使用或者进行生产部署.那么,TensorFlow 模型文件长什么样呢?TensorFlow 模型主要包含我们已经训练好的网络设计(计算图)和网络参数.因此,T…
本文介绍如何在C++环境中部署Keras或TensorFlow模型. 一.对于Keras, 第一步,使用Keras搭建.训练.保存模型. model.save('./your_keras_model.h5') 第二步,冻结Keras模型. from keras.models import load_modelimport tensorflow as tffrom tensorflow.python.framework import graph_iofrom keras import backen…
ML.NET在不久前发行了1.0版本,在考虑这一新轮子的实际用途时,最先想到的是其能否调用已有的模型,特别是最被广泛使用的Tensorflow模型.于是在查找了不少资料后,有了本篇示例.希望可以有抛砖引玉之功. 环境 Tensorflow 1.13.1 Microsoft.ML 1.0.0 Microsoft.ML.TensorFlow 0.12.0 netcoreapp2.2 训练模型 这里为了方便,利用Keras的API减少所需的代码. import tensorflow as tf mni…
获取源码,请移步笔者的github: tensorflow-serving-tutorial 由于python的灵活性和完备的生态库,使得其成为实现.验证ML算法的不二之选.但是工业界要将模型部署到生产环境上,需要考略性能问题,就不建议再使用python端的服务.这个从训练到部署的整个流程如下图所示: 基本可以把工作分为三块: Saver端 模型的离线训练与导出 Serving端 模型加载与在线预测 Client端 构建请求 本文采用 Saver (python) + Serving (tens…
前言 ​ 当一个TensorFlow模型训练出来的时候,为了投入到实际应用,所以就需要部署到服务器上.由于我本次所做的项目是一个javaweb的图像识别项目.所有我就想去寻找一下java调用TensorFlow训练模型的办法. 由于TensorFlow很久没更新的缘故,网上的博客大都是18/19年的,并且是基于TensorFlow1.0的,对于现在使用的TensorFlow2.0不太友好. 下面我简述一下TensorFlow1.0时期的方法: 1.动态模型生成不便 需要将训练的.h5模型转换成.…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=112) 环境说明 Ubuntu 18.04 MLU270 加速卡一张 前言   阅读本文前,请务必须知以下前置文章概念: <寒武纪加速平台(MLU200系列) 摸鱼指南(一)--- 基本概念及相关介绍> ( https://blog.csdn.net/u011728480/articl…
平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多,所以也就从tensorflow上下手了. 下面内容主要参考&翻译: https://www.tensorflow.org/mobile/?hl=zh-cn https://github.com/tensorflow/models/blob/master/research/object_detect…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
tensorflow模型可以利用tf.train.Saver类保存成文件.一个模型包含下面四个文件. meta文件 存储计算图的protobuf. data-00000-of-00001文件和index文件 存储权值和偏置的二进制文件. checkpoint文件 存储模型checkpoint信息的文本文件.…
https://zhuanlan.zhihu.com/p/42214716 本文是“基于Tensorflow高阶API构建大规模分布式深度学习模型系列”的第五篇,旨在通过一个完整的案例巩固一下前面几篇文章中提到的各类高阶API的使用方法,同时演示一下用tensorflow高阶API构建一个比较复杂的分布式深度学习模型的完整过程. 文本要实现的深度学习模型是阿里巴巴的算法工程师18年刚发表的论文<Entire Space Multi-Task Model: An Effective Approach…
tensorflow模型量化/DATA/share/DeepLearning/code/tensorflow/bazel-bin/tensorflow/tools/graph_transforms/transform_graph \--in_graph=./model_resnet100.pb \--out_graph=/tmp/model_resnet100_quantized_graph.pb \--inputs=input0 \--outputs=fcblock/fc1/add_1 \--…
主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部分参数.加载指定参数 tensorflow从已经训练好的模型中,恢复(指定)权重(构建新变量.网络)并继续训练(finetuning) Tensorflow 模型持久化 Model Persistence…
使用TensorFlow Serving优化TensorFlow模型 https://www.tensorflowers.cn/t/7464 https://mp.weixin.qq.com/s/qOy9fR8Zd3SufvsMmLpoGg…
移植ARM linux下远程连接工具dropbear 原文地址:http://www.cnblogs.com/NickQ/p/9010529.html 移植zlib 下载地址:https://github.com/madler/zlib/archive/v1.2.10.tar.gz 获取zlib并解压 wget https://github.com/madler/zlib/archive/v1.2.10.tar.gz -O zlib-1.2.10.tar.gz tar -zxvf zlib-1.…
使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in…
我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用.而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦. 一.基本方法 网上搜索tensorflow模型保存,搜到的大多是基本的方法.即 保存 定义变量 使用saver.save()方法保存 载入 定义变量 使…
逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑…