TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备数据 MNIST是在机器学习领域中的一个经典问题.该问题解决的是把28x28像素的灰度手写数字图片识别为相应的数字,其中数字的范围从0到9. from IPython.display import Image  import base64  Image(data=base64.decodestrin…
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(s…
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(s…
TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 Dropout 输出层 训练和评估模型 多层卷积网络 多层卷积网络的基本理论 卷积神经网络(Convolutional Neural Network,CNN) 是一种前馈神经网络, 它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.它包括卷积层(alternating…
densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflow.contrib.slim as slim import time import logging import numpy as np import pickle from PIL import Image import tensorflow as tf #from tflearn.layers.…
Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介绍了如何搭建Tensorflow的运行环境后(包括CPU和GPU的),今天就从MNIST手写识别的源码上分析一下,tensorflow的工作原理,重点是介绍CNN的一些基本理论,作为扫盲入门,也作为自己的handbook吧. Architecture 首先,简单的说下,tensorflow的基本架构…
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import numpy as np import matplotlib.pyplot as plt mnist = input_data.read_data_sets("data/",one_hot = True) #导入Tensorflwo和mnist数据集 #构建输入层 x = tf.placeho…
tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html 前言 这篇博客将利用神经网络去训练MNIST数据集,通过学习到的模型去分类手写数字. 我会将本篇博客的jupyter notebook放在最后,方便你下载在线调试!推荐结合官方的tensorflow教程来看这个notebook! 1. MNIST数据集的导入 这里介绍一下MNIST,MNIST是在…
tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html 前言 这篇博客将用tensorflow实现CNN卷积神经网络去训练MNIST数据集,并测试一下MNIST的测试集,算出精确度. 由于这一篇博客需要要有一定的基础,基础部分请看前面的tensorflow笔记,起码MNIST手写识别系列一和CNN初探要看一下,对于已经讲过的东西,不会再仔细复述,可能会…
TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/8027517.html 一.MNIST 运行 1)首先下载训练数据 在 http://yann.lecun.com/exdb/mnist/ 将四个包都下载下来,在下面代码的运行目录下创建MNIST_data目录,将四个包放进去 train-images-idx3-ubyte.gz: training s…
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在TensorFlow的中文介绍文档中的内容,有些可能与你使用的tensorflow的版本不一致了,我这里用到的tensorflow的版本就有这个问题. 另外,还给大家说下,例子中的MNIST所用到的资源图片,在原始的官网上,估计很多人都下载不到了.我也提供一下下载地址. 我的tensorflow的版…
好久没有静下心来写点东西了,最近好像又回到了高中时候的状态,休息不好,无法全心学习,恶性循环,现在终于调整的好一点了,听着纯音乐突然非常伤感,那些曾经快乐的大学时光啊,突然又慢慢的一下子出现在了眼前,不知道我大学的那些小伙伴们现在都怎么样了,考研的刚刚希望他考上,实习的菜头希望他早日脱离苦海,小瑞哥希望他早日出成果,范爷熊健研究生一定要过的开心啊!天哥也哥早日结婚领证!那些回不去的曾经的快乐的时光,你们都还好吗! 最近开始接触Tensorflow,可能是论文里用的是这个框架吧,其实我还是觉得py…
AI应用开发实战 - 手写识别应用入门 手写体识别的应用已经非常流行了,如输入法,图片中的文字识别等.但对于大多数开发人员来说,如何实现这样的一个应用,还是会感觉无从下手.本文从简单的MNIST训练出来的模型开始,和大家一起入门手写体识别. 在本教程结束后,会得到一个能用的AI应用,也许是你的第一个AI应用.虽然离实际使用还有较大的距离(具体差距在文章后面会分析),但会让你对AI应用有一个初步的认识,有能力逐步搭建出能够实际应用的模型. 建议和反馈,请发送到 https://github.com…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lusing/article/details/79965160 去年买了几本讲tensorflow的书,结果今年看的时候发现有些样例代码所用的API已经过时了.看来自己维护一个保持更新的Tensorflow的教程还是有意义的.这是写这一系列的初心. 快餐教程系列希望能够尽可能降低门槛,少讲,讲透. 为了让大家在一开始就看到一个美好的场景,而不…
1. Tensorflow 逻辑回归实现手写识别 1.1. 逻辑回归原理 1.1.1. 逻辑回归 1.1.2. 损失函数 1.2. 实例:手写识别系统 1.1. 逻辑回归原理 1.1.1. 逻辑回归 在现实生活中,我们遇到的数据大多数都是非线性的,因此我们不能用上一章线性回归的方法来进行数据拟合.但是我们仍然可以从线性模型着手开始第一步,首先对输入的数据进行加权求和. 线性模型: \[z=w{x}+b\] 其中w我们称为"权重",b为偏置量(bias),\({x}\)为输入的样本数据,…
折腾了一天半终于装好了win10下的TensorFlow-GPU版,在这里做个记录. 准备安装包: visual studio 2015: Anaconda3-4.2.0-Windows-x86_64: pycharm-community: CUDA:cuda_8.0.61_win10:下载时选择 exe(local) CUDA补丁:cuda_8.0.61.2_windows: cuDNN:cudnn-8.0-windows10-x64-v6.0;如果你安装的TensorFlow版本和我一样1.…
Haskell手撸Softmax回归实现MNIST手写识别 前言 初学Haskell,看的书是Learn You a Haskell for Great Good, 才刚看到Making Our Own Types and Typeclasses这一章. 为了加深对Haskell的理解,便动手写了个Softmax回归.纯粹造轮子,只用了base. 显示图片虽然用了OpenGL,但是本文不会提到关于OpenGL的内容.虽说是造轮子, 但是这轮子造得还是使我受益匪浅.Softmax回归方面的内容参考…
''' Created on 2017年4月20日 @author: weizhen ''' #手写识别 from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("/path/to/MNIST_data/",one_hot=True) batch_size=100 xs,ys = mnist.train.next_batch(batch_size) #从trai…
欲直接下载代码文件,关注我们的公众号哦!查看历史消息即可! 手写笔记还是电子笔记好呢? 毕业季刚结束,眼瞅着2018级小萌新马上就要来了,老腊肉小编为了咱学弟学妹们的学习,绞尽脑汁准备编一套大学秘籍,这不刚开了个头就遇上了个难题--做笔记到底是手写笔记好呢还是电子笔记好呢? 聪明的小伙伴们或许就该怼小编了,不是有电子手写笔记吗!哼,机智如我怎么可能没想过这个呢! 大家用电子笔记除了省纸张外,往往还希望有笔记整理和搜索的功能,手写电子笔记如果不能实现手写识别搜索的功能,那还真是只能省纸张了.为此小…
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Adam,常用优化器之一 大多数情况下,adma速度较快,达到较优值迭代周期较少, 一般比SGD效果好 CNN应用于手写识别 import numpy as np from keras.datasets import mnist #将会从网络下载mnist数据集 from keras.utils import np_u…
使用PyTorch构建神经网络模型进行手写识别 PyTorch是一种基于Torch库的开源机器学习库,应用于计算机视觉和自然语言处理等应用,本章内容将从安装以及通过Torch构建基础的神经网络,计算梯度为主要内容进行学习. How can we install Torch? Torch在Linux,Windows,Mac等开发环境下都有特定的安装方法,首先搜索官方网页https://pytorch.org/,由下图所示我们可以根据自己适合的环境进行选择,我使用的是1.9.0版本Windows环境…
记得前面(忘了是哪天写的,反正是前些天,请用力点击这里观看)老周讲了一个14393新增的控件,可以很轻松地结合InkCanvas来完成涂鸦.其实,InkCanvas除了涂鸦外,另一个大用途是墨迹识别,就是手写识别. 识别功能早在Win 8 App的API中就有了,到了UWP,同样使用,这叫传承,一路学过来,都是一个体系的,我不明白为什么某些人一遇到升级就说SDK变化太大,适应不了.我是不明白了,有什么适应不了的,该不会是你笨吧,或者学习方法不对.反正老周在以前的博客中都说过了,学习要学活,不要把…
UnistrokeRecognizer 单笔手写识别.手势识别 UnistrokeRecognizer : https://github.com/RichLiu1023/UnistrokeRecognizer ===>顺便点个星 此版本可以在 Egret 中直接使用. 此库的识别率非常高,完美解决我游戏中的手势! 1.自定义手势库,灵活定义各种手势 2.用量角器(快)识别算法 3.黄金分割搜索算法 Demo 使用Egret,可以自定义手势. //自定义手势添加 addGesture(name:…
Zinnia库及其实现方法研究 (转) zinnia是一个开源的手写识别库.采用C++实现.具有手写识别,学习以及文字模型数据制作转换等功能. 项目地址 [http://zinnia.sourceforge.net ] License: NewBSD 作者对SVM很有研究. 比同类程序的效率要高效.(同类项目如tegaki) 我的目的是通过这个研究简单的手写输入实现方法 Zinnia库特点 SVM机实现 轻量级,可移植 线程安全,可供C,C++,Perl,Python,Ruby调用 每秒50-1…
http://blog.csdn.net/archfree/article/details/6023676 1)一个为Android平台,将识别由手机的相机拍摄的图像文本应用程序. http://code.google.com/p/mobileocr/ 2)手写识别 Android frontend for Jim Breen's WWWJDIC http://code.google.com/p/wwwjdic/ 3)识别餐厅菜单及旅游介绍等,并翻译 Mezzofanti是一个Android的手…
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征比较,算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前K个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类”. 优点:精度高.对异常…
效果展示 这不是OCR,有些人可能会觉得这东西会和OCR一样,直接进行整个字的识别就行,然而并不是. OCR是2维像素矩阵的像素数据.而手写识别不一样,手写可以把用户写字的笔画时间顺序,抽象成一个维度.这样识别的就是3维的数据了.识别起来简单很多. 最近需要做一个中文手写识别算法.搜索了网上的一些前人作品,发现都是只讲了理论,不讲实际开发.于是打算自己开发一个,并记录开发过程. 由于代码量比较多,这里不会全部贴上来讲解,代码已经放到了gitee,部分地方需对照代码进行观看,下面有URL. 思路…
1 算法概述 1.1 优劣 优点:进度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 应用:主要用于文本分类,相似推荐 适用数据范围:数值型和标称型 1.2 算法伪代码 (1)计算已知类别数据集中的点与当前点的距离 (2)按照距离递增次序排序,选取与当前点距离最小的 k 个点 (3)确定前 k 个点所在类别的出现频率 (4)返回前 k 个点出现频率最高的类别作为当前点的预测分类 2 手写识别 2.1 概念 指在手写设备上书写时产生的轨迹信息转化为具体字码,本篇博客重点非搭建…
[源码下载] 背水一战 Windows 10 (62) - 控件(媒体类): InkCanvas 保存和加载, 手写识别 作者:webabcd 介绍背水一战 Windows 10 之 控件(媒体类) InkCanvas 保存和加载 InkCanvas 手写识别 示例1.演示 InkCanvas 涂鸦板的保存和加载Controls/MediaControl/InkCanvasDemo3.xaml <Page x:Class="Windows10.Controls.MediaControl.I…
上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的一类.假设一个样本空间被分为几类,然后给定一个待分类的特征数据,通过计算距离该数据的最近的k个样本来判断这个数据属于哪一类.如果距离待分类属性最近的k个类大多数都属于某一个特定的类,那么这个待分类的数据也就属于这个类.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来…