caffe自带的例子中对mnist手写体数字训练使用的卷积神经网络是在lenet_train_test.prototxt中定义的,隐含层包含了2个卷积层,2个池化层,2个全连接层,1个激活函数层.网络结构如下: 这里尝试修改一下lenet_train_test.prototxt文件,减少或增加一组卷积层和池化层,对比一下各自的训练精度和损失. 1.  减少一组卷积层和池化层 这样隐含层就包含了1个卷积层,1个池化层,2个全连接层,1个激活函数层.修改的方式直接在lenet_train_test.…
现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等.(如果是冬天的情况下,行人穿着厚实,性别识别更加难) solution: 针对难以提取特定特征的图像,可以采用卷积神经网络CNN去自动提取并训练. 数据准备:  采用 PETA数据集,Pedestrain Attribute Recognition At Far Distance. 该数据集一共包…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…
caffe训练自己的图片进行分类预测 标签: caffe预测 2017-03-08 21:17 273人阅读 评论(0) 收藏 举报  分类: caffe之旅(4)  版权声明:本文为博主原创文章,未经博主允许不得转载. 搭建好caffe环境后,就需要用自己的图片进行分类预测,主要步骤如下,主要参照http://www.cnblogs.com/denny402/p/5083300.html,感谢博主: 1.数据准备,下载待训练的图片集,共5类400张,测试集100张,目录分别为data\re\t…
Tags: Caffe Categories: Tools/Wheels --- 1. 将caffe训练时将屏幕输出定向到文本文件 caffe中自带可以画图的工具,在caffe路径下: ./tools/extra/parse_log.sh ./tools/extra/extract_seconds.py ./tools/extra/plot_training_log.py.example 日志重定向:在训练命令中加入一行参数,实现log日志定向到文件: caffe train --sover=/…
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分类.第一篇<实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >有讲过使用Caffe的背景.所以这篇记录使用的素材就是12306的验证码来进行图像识别分类. 1.准备素材 由于这里抓取到的验证码是整合后的大图.就是8张小图片合成的.由于12306的验证码大图并…
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码要千张图片样本. 2.在制作训练样本标签时,是否打乱样本顺序,这样在训练时每取batch_size个样本就可以训练多个类别,以防止时出现常出现0精度或1精度的情况. 3.文件solver.prototxt和文件train_val.prototxt的配置问题,一般调节solver文件中的学习率base…
1.在开始之前,先简单回顾一下几个概念. Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深度学习框架. CUDA(Compute Unifined Device Architecture-计算统一设备框架):是显卡厂商NVIDIA推出的运算平台. CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题. CuDNN( CUDA Deep Neural N…
caffe 进行自己的imageNet训练分类:loss一直是87.3365,accuracy一直是0 解决方法: http://blog.csdn.net/jkfdqjjy/article/details/52268565?locationNum=14 知道了原因,解决时就能对症下药.总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各层权重参数. 1.观察数据中是否有异常样本或异常label导致数据读取异常2.调小初始化权重,以便使softmax输入的f…
网上有很多关于tensorflow lite在安卓端部署的教程,但是大多只讲如何把训练好的模型部署到安卓端,不讲如何训练,而实际上在部署的时候,需要知道训练模型时预处理的细节,这就导致了自己训练的模型在部署到安卓端的时候出现各种问题.因此,本文会记录从PC端训练.导出到安卓端部署的各种细节.欢迎大家讨论.指教. PC端系统:Ubuntu14 tensorflow版本:tensroflow1.14 安卓版本:9.0 PC端训练过程 数据集:自定义生成 训练框架:tensorflow slim  关…
训练AlexNet网络时,出现Check failed:datum_height >= crop_size (size vs. 227)错误,具体如下图所示: 根据提示,问题是crop_size的尺寸不匹配,AlexNet网络默认crop_size的尺寸是227*227,而我进行归一化时将每幅图像归一化成了32*32,所以这里出现问题. 在train_val.prototxt文件中将其改为32*32后,上图问题解决,如下图所示: 但紧接着出现下面的问题,如下图所示: 这个问题是由于归一化后的尺寸…
训练时,出现Check failed:error == cudaSuccess (2 vs. 0) out of memory,并且accruary = 0,如下图所示: 解决方法:将train_val.prototxt文件中的batch_size变小一点,如下图所示: 也可参见博客: http://blog.csdn.net/u013066730/article/details/53784614…
现在一直都是用Caffe在跑别人写好的网络,如何运行自定义的网络和图片,是接下来要学习的一点. 1. 使用Caffe中自带的网络模型来运行自己的数据集 参考 [1] :http://www.cnblogs.com/denny402/p/5083300.html,下面几乎是全文转载,有部分对自己踩过的坑的补充,向原作者致敬! 一.准备数据 我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车.恐龙.大象.鲜花和马五个类,每个类100张.需要的同学,可到我的网盘下载:http://pan.…
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可).即训练数据集:/data/train/0./data/train/1  训练数据集:/data/val/0./data/val/1. 数据准备好之后,创建记录数据文件和对应标签的txt文件 (1)创建训练数据集的train.txt import os f =open(r'tr…
对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可. #include <caffe/caffe.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <iosf…
参考博客:blog.csdn.net/drrlalala/article/details/47274549 1,首先在网上下载图片,猫和狗.直接保存下载该网页,会生成一个有图片的文件夹.caffe-master/data  新建 myselfmyself/  新建  train   dog                                cat                       test   dog                                cat之后…
1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-FeiLi, Marco Andreetto, Marc 'Aurelio Ranzato在2003年9月收集而成的.Caltech101包含101种类别的物体,每种类别大约40到800个图像,大部分的类别有大约50个图像.Caltech256包含256种类别的物体,大约30607张图像.图像如下图所示…
数据集 1.准备数据集 1)下载训练和验证图片 ImageNet官网地址:http://www.image-net.org/signup.php?next=download-images (需用邮箱注册,而且邮箱不能是地址以.com结尾的邮箱) ImageNet官网下载ILSVRC2012的训练数据集和验证数据集.除数据集外,ImageNet还提供了一个开发工具包ILSVRC2012_devkit_t12.tar.gz,是对ILSVRC2012数据集的详细讲解,提交比赛结果的要求,和对结果评价的…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5783006.html 之前使用的是torch,由于其他人在caffe上面预训练了inception模型,需要使用caffe的inception模型进行微调.然后网上搜了一下如何将caffe模型load到torch里面.有两种方式(可直接跳转到3查看): 1. https://github.com/szagoruyko/loadcaffe 该网址的不需要安装caffe.应该是根据.prototxt来强…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
原文转载:https://blog.csdn.net/zhongshaoyy/article/details/53502373 cifar10训练步骤如下: (1)打开终端,应用cd切换路径,如 cd ~/caffe/data/cifar10 , (2)继续执行命令   ./get_cifar10.sh, (3)成功下载数据集之后,执行ls即可见所下载的数据文件, (4)再次将路径切换到cd ~/caffe/examples/cifar10 (5)继续执行命令 ./create_cifar10.…
首先得到了https://blog.csdn.net/gybheroin/article/details/72581318系列博客的帮助.表示感激. 关于安装caffe已在之前的博客介绍,自用可行,https://www.cnblogs.com/MY0213/p/9225310.html 1.数据源 首先使用的数据集为人脸数据集,可在百度云自行下载: 链接:https://pan.baidu.com/s/156DiOuB46wKrM0cEaAgfMw 密码:1ap0 将train.zip解压可得…
接下来几天,将把自己最近读的关于图片分类的经典网络模型论文整理一遍.大概做个摘要.这些论文都是在imagenet上1.2 million数据训练出来的. 由于从这些预训练的网络训练的deep feature有良好的泛化能力,可以应用到其他不同的CV问题,而且比传统的hand-craft feature要好,所以得到广泛应用. 从AlexNet论文说起,ImageNet Classification with Deep Convolutional Neural Networks. 在ImageNe…
1.   caffe-master文件夹权限修改 下载的caffe源码编译的caffe-master文件夹貌似没有写入权限,输入以下命令修改: sudo chmod -R 777 ~/caffe-master/ 2.   下载mnist数据库 cd ~/caffe sduo ./data/mnist/get_mnist.sh caffe中的./data/mnist/get_mnist.sh 文件实现了下载mnist数据库的功能,文件的内容如下: 执行之后,在./data/mnist文件夹下生成4…
CIFAR-10是一个用于普适物体识别的数据集.Cifar-10由60000张32*32的RGB彩色图片构成,50000张训练图片,10000张测试图片,分为10类.cifar下载地址: http://www.cs.toronto.edu/~kriz/cifar.html 数据集分为3个版本,分别是Matlab.python和二进制格式的,这里选择二进制格式的下载.包含五个训练文件,一个测试文件: 1. cifar二进制数据库转换成lmdb文件 新建一个binToLmdb.bat的脚本文件,输入…
简单记录一下自己使用caffe的过程和遇到的一些问题. 下载caffe以及安装不具体叙述了. 可參照 http://caffe.berkeleyvision.org/installation.html. 以下准备数据集和训练的过程參照imagenet的过程:可參考  http://drubiano.github.io/2014/06/18/caffe-custom-data.html 1. 将数据集分为train和validate, 分别写到train.txt和val.txt中. 格式每一行文件…
转自:https://www.cnblogs.com/haiyang21/p/7614669.html F0717 :: math_functions.cu:] Check failed: status == CUBLAS_STATUS_SUCCESS ( vs. ) CUBLAS_STATUS_MAPPING_ERROR *** Check failure stack trace: *** @ 0x7fbe7ed3a5cd google::LogMessage::Fail() @ 0x7fbe…
1. 首先是提取 训练日志文件; 2. 然后是matlab代码: clear all; close all; clc; log_file = '/home/wangxiao/Downloads/43_attribute_baseline.log'; fid = fopen(log_file, 'r'); fid_accuracy = fopen('/home/wangxiao/Downloads/output_accuracy.txt', 'w'); fid_loss = fopen('/hom…
I0415 15:03:37.603461 27311 solver.cpp:42] Solver scaffolding done.I0415 15:03:37.603549 27311 solver.cpp:247] Solving AlexNetI0415 15:03:37.603559 27311 solver.cpp:248] Learning Rate Policy: stepI0415 15:03:37.749981 27311 solver.cpp:214] Iteration…