SparkStreaming--reduceByKeyAndWindow】的更多相关文章

一.前述 SparkStreaming中的算子分为两类,一类是Transformation类算子,一类是OutPutOperator类算子. Transformation类算子updateStateByKey,reduceByKeyAndWindow,transform OutPutOperator类算子print,foreachRDD,saveAsTextFile 本文讲解OutPutOperator类算子. 二.具体 1.foreachRDD 可以拿到DStream中的一个个的RDD,对拿到…
一.前述 今天分享一篇SparkStreaming常用的算子transform和updateStateByKey. 可以通过transform算子,对Dstream做RDD到RDD的任意操作.其实就是DStream的类型转换. 算子内,拿到的RDD算子外,代码是在Driver端执行的,每个batchInterval执行一次,可以做到动态改变广播变量. 为SparkStreaming中每一个Key维护一份state状态,通过更新函数对该key的状态不断更新. 二.具体细节         1.tr…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.output operation算子1.foreachRDD:必须对抽取出来的RDD执行action类算子,代码才能执行. (1.1)foreachRDD可以拿到DStream中的RDD (1.2)foreachRDD call方法内,拿到的RDD的算子外的代码在Driver端执行.可…
一:说明 1.图例说明 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2.对比说明 DStream: batchInterval: 批次产生间隔时间 Window DStream: windowInterv…
1.简介 Spark Streaming处理的数据流图: Spark Streaming在内部的处理机制是,接收实时流的数据,并根据一定的时间间隔拆分成一批批的数据,然后通过Spark Engine处理这些批数据,最终得到处理后的一批批结果数据. 对应的批数据,在Spark内核对应一个RDD实例,因此,对应流数据的DStream可以看成是一组RDDs,即RDD的一个序列.通俗点理解的话,在流数据分成一批一批后,通过一个先进先出的队列,然后 Spark Engine从该队列中依次取出一个个批数据,…
Overview 整个项目的整体架构如下: 关于SparkStreaming的部分: Flume传数据到SparkStreaming:为了简单使用的是push-based的方式.这种方式可能会丢失数据,但是简单. SparkStreaming因为micro-batch的架构,跟我们这个实时热点的应用还是比较契合的. SparkStreaming这边是基于sliding window实现实时热搜的,batch interval待定(1min左右),window也待定(3~N* batch inte…
1.下载spark-streaming-kafka插件包 由于Linux集群环境我使用spark是spark-2.1.1-bin-hadoop2.7,kafka是kafka_2.11-0.8.2.1,所以我下载的是spark-streaming-kafka-0-8_2.11-2.1.1.jar. 官网下载地址:http://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka-0-8_2.11/2.1.1 百度云下载地…
第1章 Spark Streaming概述 1.1 Spark Streaming是什么 Spark Streaming用于流式数据的处理.Spark Streaming支持的数据输入源很多,例如:Kafka.Flume.Twitter.ZeroMQ和简单的TCP套接字等等.数据输入后可以用Spark的高度抽象原语如:map.reduce.join.window等进行运算.而结果也能保存在很多地方,如HDFS,数据库等. 和Spark基于RDD的概念很相似,Spark Streaming使用离散…
文章出处:http://www.cnblogs.com/haozhengfei/p/e353daff460b01a5be13688fe1f8c952.html Spark_总结五 1.Storm 和 SparkStreaming区别 Storm                      纯实时的流式处理,来一条数据就立即进行处理 SparkStreaming 微批处理,每次处理的都是一批非常小的数据 Storm支持动态调整并行度(动态的资源分配),SparkStreaming(粗粒度, 比较消耗…
Kafka0.8版本基于receiver接受器去接受kafka topic中的数据(并演示reduceByKeyAndWindow的使用) 依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-8_2.11</artifactId> <version>2.1.3</version> </depen…
DStream编程数据模型 DStream(Discretized Stream)作为Spark Streaming的基础抽象,它代表持续性的数据流. 这些数据流既可以通过外部输入源赖获取,也可以通过现有的Dstream的transformation操作来获得. 在内部实现上,DStream由一组时间序列上连续的RDD来表示.每个RDD都包含了自己特定时间间隔内的数据流. 对DStream中数据的各种操作也是映射到内部的RDD上来进行的 对Dtream的操作可以通过RDD的transformat…
Spark-Streaming之window滑动窗口应用,Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作.每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会作为window DStream的一个RDD. 网官图中所示,就是对每三秒钟的数据执行一次滑动窗口计算,这3秒内的3个RDD会被聚合起来进行处理,然后过了两秒钟,又会对最近三秒内的数据执行滑动窗口计算.所以每个滑动窗口操作,都必须指定两个参数,窗口长度以及滑…
一.简介 流应用程序必须保证7*24全天候运行,因此必须能够适应与程序逻辑无关的故障[例如:系统故障.JVM崩溃等].为了实现这一点,SparkStreaming需要将足够的信息保存到容错存储系统中,以便它可以从故障中恢复. 检查点有两种类型. 1.元数据检查点 将定义流式计算的信息保存到容错存储系统[如HDFS等].这用于从运行流应用程序所在的节点的故障中恢复. 元数据包括: 1.配置 用于创建流应用程序的配置. 2.DStream操作 定义流应用程序的DStream操作集. 3.不完整的批次…
Streaming 统计来自 kafka 的数据,这里涉及到的比较,kafka 的数据是使用从 flume 获取到的,这里相当于一个小的案例. 1. 启动 kafka Spark-Streaming hdfs count 案例 2. 启动 flume flume-ng agent -c conf -f conf/kafka_test.conf -n a1 -Dflume.root.logger=INFO,console flume 配置文件如下 # Name the components on…
1.无状态转换操作 (1)无状态转化操作就是把简单的RDD转化操作应用到每个批次上,也就是转换DStream中的每一个RDD. 部分无状态转化操作: (2)尽管这些函数韩起来像作用在整个流上一样,但事实上每个DStream在内部是由许多RDD(批次)组成,且无状态转化操作是分别应用到每个RDD上. 例如:reduceByKey()会化简每个事件区间中的数据,但不会化简不同区间之间的数据. (3)在wordcount中,我们只会统计几秒内接收到的数据的单词个数,而不会累加 (4)无状态转化操作也能…
一.介绍 1.sparkStreaming是核心模块Spark API的扩展,具有可伸缩,高吞吐量以及容错的实时数据流处理等.数据可以从许多来源(如Kafka,Flume,Kinesis或TCP套接字)中获取.并且可以使用以高级函数表示的复杂算法进行处理map,例如reduce,join和window.最后,处理后的数据可以推送到文件系统,数据库和实时仪表盘.[DStresam]:离散流,连续的RDD序列.准实时计算,以batch处理作业. 2.在内部,它的工作原理如下.Spark Stream…
SparkStreaming SparkStreaming是一种微批处理,准实时的流式框架.数据来源包括:Kafka, Flume,TCP sockets,Twitter,ZeroMQ等 SparkStreaming与storm的区别: SparkStreaming微批处理数据,storm按条处理数据 SparkStreaming支持稍复杂的逻辑 SparkStreaming与storm都支持资源动态调整和事务机制 SparkStreaming的处理架构:采用recevier task持续拉取数…
简介 SparkStreaming是流式处理框架,是Spark API的扩展,支持可扩展.高吞吐量.容错的准实时数据流处理. 实时数据的来源可以是:Kafka, Flume, Twitter, ZeroMQ或者TCP sockets,并且可以使用高级功能的复杂算子来处理流数据. 例如:map,reduce,join,window 最终,处理后的数据可以存放在文件系统,数据库等,方便实时展现. SparkStreaming 与 Storm, Flink(Native Streaming) 的比较…
SparkStreaming练习之StreamingTest,UpdateStateByKey,WindowOperator 一.SparkStreaming算子操作 1.1 foreachRDD 1.2 transform 1.3 updateStateByKey 1.4 操作窗口 二.Driver HA(Standalone或者Mesos) 三.Output操作 算子操作实例 1 pom.xml 2 StreamingTest 3 UpdateStateByKey 4 WindowOpera…
目录 一. SparkStreaming简介 1. 相关术语 2. SparkStreaming概念 3. SparkStreaming架构 4. 背压机制 二. Dstream入门 1. WordCount案例实操 2. WordCount解析 3. web UI 注意 三. Dstream创建 1. RDD队列(测试使用) 2. 自定义数据源 3. Kafka直连 案例 实现数据零丢失 四. DStream转化 (API) 无状态转化 Transform 双流 join 有状态转化(重要)…
1.简介 最近在摸索利用sparkstreaming从kafka中准实时的读取数据,并将在读取的过程中,可以做一个简单的分析,最后将分析结果写入hbase中. 2.出现的问题 (1)将从kafka中读取数据的程序打包到服务器上运行,发现需要用kafka相关的包,因此采用assembly的方法打包即可. (2)运行 spark-submit  --class "com.yiban.datacenter.MyDataCollection.KafkaToHbase" --master loc…
要完整去学习spark源码是一件非常不容易的事情,但是咱可以积少成多嘛~那么,Spark Streaming是怎么搞的呢? 本质上,SparkStreaming接收实时输入数据流并将它们按批次划分,然后交给Spark引擎处理生成按照批次划分的结果流: SparkStreaming提供了表示连续数据流的.高度抽象的被称为离散流的Dstream,可以使用kafka.Flume和Kiness这些数据源的输入数据流创建Dstream,也可以在其他Dstream上使用map.reduce.join.win…
文章发自http://www.cnblogs.com/hark0623/p/4204104.html ,转载请注明 我发现太多太多的坑要趟了… 向yarn提交sparkstreaming了,提交脚本如下,使用的是yarn-client spark-submit --driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 3 --class com.yhx.sensor.sparkstreaming.Logi…
createStream那几个参数折腾了我好久..网上都是一带而过,最终才搞懂..关于sparkStreaming的还是太少,最终尝试成功... 首先启动zookeeper ./bin/zookeeper-server-start.sh config/zookeeper.properties & 启动kafka bin/kafka-server-start.sh config/server.properties & 创建一个topic ./kafka-topics.sh --create…
看书大概了解了下Streaming的原理,但是木有动过手啊...万事开头难啊,一个wordcount 2小时怎么都运行不出结果.是我太蠢了,好了言归正传. SparkStreaming是一个批处理的流式计算框架,适合处理实时数据与历史数据混合处理的场景(比如,你用streaming将实时数据读入处理,再使用sparkSQL提取历史数据,与之关联处理).Spark Streaming将数据流以时间片为单位分割形成RDD,使用RDD操作处理每一块数据,没块数据都会生成一个spark JOB进行处理,…
Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过程. 从框架代码开始 我们从生成Job开始,generateJobs方法产生了Job,之后,提交了一个JobSet来进行处理. JobSet会根据输出情况来确定Job数量,有多少个输出就有多少个Job,在我们的演示代码中,只有一个outputDStream,所以job是一个.jobExecutor…
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28已经分析过local模式下的日志,集群模式会比较类似,这次主要是对集群模式在的web监控台,进行统一的深度刨析. 我们从wordcount程序开始,代码如下,为了展示出SparkStreaming在集群中的运行,Batch Duration设置为5分钟. 系统作业 为了观察持续运行的情况,我们运行了…
Spark Streaming揭秘 Day6 关于SparkStreaming Job的一些思考 Job是SparkStreaming的重要基础,今天让我们深入,进行一些思考. Job是什么? 首先,有个挺重要的概念要区分下,就是SparkStreaming中的Job和Spark core的Job并不相同,可以认为SparkStreaming中的Job是一个应用程序,不同于Spark core中的Job. 从Job的的定义来看,类似于一个Java Bean,核心是其run方法,相当于Java中线…
SparkStreaming 分析 (基于1.5版本源码) SparkStreaming 介绍 SparkStreaming是一个流式批处理框架,它的核心执行引擎是Spark,适合处理实时数据与历史数据混合处理的场景.其处理流程如下: 1.    接收实时流数据并持久化 2.    将实时流以时间片切分成多个批次 3.    将每块(一个批次)的数据做为RDD,并用RDD操作处理数据 4.    每块数据生成一个SparkJob,提交Spark进行处理,并返回结果 Dstream 介绍 Spar…
概述 Word2vec是一款由谷歌发布开源的自然语言处理算法,其目的是把words转换成vectors,从而可以用数学的方法来分析words之间的关系.Spark其该算法进行了封装,并在mllib中实现. 整体流程是spark离线训练模型,可以是1小时1训练也可以1天1训练,根据具体业务来判断,sparkstreaming在线分析. 由于历史问题,spark还在用1.5.0,接口上和2.1还是有点区别,大概看了下文档,流程上差不多 spark离线训练 如下代码,通过word2vec训练出一个模型…