凸形状内部的任意两点的连线都应该在形状里面. 1 道格拉斯-普克算法 Douglas-Peucker algorithm 这个算法在其他文章中讲述的非常详细,此处就详细撰述. 下图是引用维基百科的.ε称之为阈值 shreshold 图一 静态图如下: 具体详细的可以参考如下两篇文章. 相关文章如下: 道格拉斯-普克 抽稀算法 附javascript实现,该文章只看他的文字讲解就好,他的代码不是通过python实现的. 道格拉斯-普克算法(Douglas–Peucker algorithm),该文…
本节代码使用的opencv-python 4.0.1,numpy 1.15.4 + mkl 使用图片为 Mjolnir_Round_Car_Magnet_300x300.jpg 代码如下: import cv2 import numpy as np # img = cv2.imread('lightning.jpg',0) img = cv2.imread('Mjolnir.jpg',cv2.IMREAD_UNCHANGED) # img = cv2.pyrUp(img) img_gray =…
opencv-python   4.0.1 1 函数释义 词义:发现轮廓! 从二进制图像中查找轮廓(Finds contours in a binary image):轮廓是形状分析和物体检测和识别的有用工具. findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy 参数 image - 一个8位单通道二值图像(非0即1).非零像素视为1.零像素依然为0, 因此图像被视…
GIS领域的同志都知道,传统的道格拉斯-普克算法都是递归实现.然而有时候递归的层次太深的话会出现栈溢出的情况.在此,介绍一种非递归的算法. 要将递归算法改为非递归算法,一般情况下分为两种场景.第一种是问题定义是递归的,如阶乘.斐波那契数列等,对于这类问题,改为递归算法很简单,直接用迭代来做.另外一种是过程是递归的,如本文的道格拉斯-普克算法,对于这类问题呢,一般是用栈(stack)来记录中间结果,最后得到结果. 为了保证极值点的不被舍去,将曲线在弯曲极值点分为两段处理,弯曲极值点通过中间点与相邻…
需求: 有时候当移动速度很慢,GPS定位的轨迹点就非常的多,这时候为了缩减数据量,需要将不突出的点去掉. 思路: (1) 在曲线首尾两点间虚连一条直线,求出其余各点到该直线的距离. (2)选其最大者与阈值相比较,若大于阈值,则离该直线距离最大的点保留,否则将直线两端点间各点全部舍去. (3)依据所保留的点,将已知曲线分成两部分处理,重复第1.2步操作,迭代操作,即仍选距离最大者与阈值比较,依次取舍,直到无点可舍去,最后得到满足给定精度限差的曲线点坐标 这里使用道格拉斯-普克算法实现,易于理解.效…
函数中的代码是部分代码,详细代码在最后 1 cv2.boundingRect 作用:矩形边框(boundingRect),用于计算图像一系列点的外部矩形边界. cv2.boundingRect(array) -> retval 参数: array - 灰度图像(gray-scale image)或 2D点集( 2D point set ) 返回值:元组 元组(x, y, w, h ) 矩形左上点坐标,w, h 是矩阵的宽.高,例如 (161, 153, 531, 446) 代码示例: conto…
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分支,它从同一物体的两张不同图像提取三维信息. 极几何的工作原理: 它跟踪从摄像头到图像上每个物体的虚线,然后再第二张图像做同样的操作,并根据同一物体对应的线的交叉来计算距离. 在使用 OpenCV 如何使用极几何来计算所谓的视差图,它是如图像中检测到不同深度的基本表示,这样就能够提取出一张图片的前景…
检测边缘和轮廓不仅重要,还经常用到,它们也是构成其他复杂操作的基础. 直线和形状检测与边缘和轮廓检测有密切的关系. 霍夫hough 变换是直线和形状检测背后的理论基础.霍夫变化是基于极坐标和向量开展的,常规的直线是二维平面直角坐标上建立的 y = kx + b 该直线的参数 k.b 存在有负值,负值则不便于计算(有资料这样撰写的,没有深究,就以此为参考吧),对于极坐标而言,其表达式为 r=x * cosθ + y * sinθ 参数r.θ均可以为正数(极坐标r值永远是大于等于0的数,θ就可以用0…
opencv-python   4.0.1 轮廓的绘制或填充. cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image 参数: image - 目标图像 contours - 所有的输入轮廓,每个轮廓为点矢量(a point vector)/点向量 形式,与findcontours中的返回值 contours…
opencv-python   4.0.1 简介:该函数是对数组中的每一个元素(each array element)应用固定级别阈值(Applies a fixed-level threshold) 具体地讲,该函数的阈值操作属于像素级的操作,在灰度图中,每个像素都对应一个灰度值(0~255,0黑.255白),此时我们将阈值函数 threshold() 应用于图像,图像的灰度值与阈值进行比较,从而实现二值化处理,目的是滤除太大或太小值像素.消除噪声,从而从灰度图中获取二值图像(将图像的灰度值设…