1.9TF的过拟合-dropout】的更多相关文章

不带dropout程序并通过tensorboard查看loss的图像 """ Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly. """ from __future__ import print_function import tensorflow as tf from sklea…
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/tornadomeet/p/3258122.html 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络. Dropout是指在模型训练时随机让网络某些…
课程主页:http://cs231n.stanford.edu/ _______________________________________________________________________________________________________________________________________________________ -Parameter Updates 解决的方法: *Momentum update 其实就是把x再加上mu*v(可以看作是下滑过…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(regularization).另一个解决高方差的方法就是准备更多的数据,这也是非常可靠的方法. 正则化的原理 正则化公式简析 L1范数:向量各个元素绝对值之和 L2范数:向量各个元素的平方求和然后求平方根 Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方 L∞范数:向量各个元素求绝对值,最大那…
工作流程 dropout用于解决过拟合,通过在每个batch中删除某些节点(cell)进行训练,从而提高模型训练的效果. 通过随机化一个伯努利分布,然后于输入y进行乘法,将对应位置的cell置零.然后y再去做下一层的前向传播. \[\begin{aligned} r_{j}^{(l)} & \sim \operatorname{Bernoulli}(p) \\ \widetilde{\mathbf{y}}^{(l)} &=\mathbf{r}^{(l)} * \mathbf{y}^{(l)…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9769301.html Keras是什么? Keras:基于Theano和TensorFlow的深度学习库 Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow.Theano以及CNTK后端.Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可…
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…
TensorFlow模型保存和提取方法 1. tensorflow实现 卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化) # 卷积网络的训练数据为MNIST(28*28灰度单色图像) import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data train_epochs…
1.卷积神经网络由输入层,卷积层,激活函数,池化层,全连接层组成. input(输入层)--conv(卷积层)--relu(激活函数)--pool(池化层)--fc(全连接层) 2.卷积层: 主要用来进行特征的提取 卷积操作是使用一个二维的卷积核在一个批处理的图片上进行不断扫描.具体操作是将一个卷积核在每张图片上按照一个合适的尺寸在每个通道上面进行扫描. tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, na…
''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数 import LeNet5_infernece # 配置神经网络的参数 BATCH_SIZE = 100 L…
对Keras提供的对各种层的抽象进行相对全面的概括 1 基础常用层 名称 作用 原型参数 Dense 实现全连接层 Dense(units,activation,use_bias=True, kernel_initializer=’glorot_uniform’, bias_initializer=’zeros’) Activation 对上层输出应用激活函数 Activation(activation) Dropout 对上层输出应用dropout以防止过拟合 Dropout(ratio) F…
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 # 第一层卷积层的尺寸和深度 CONV1_DEEP = 32 CONV1_SIZE = 5 # 第二层卷积层的尺寸和深度 CONV2_DEEP = 64 CONV2_SIZE = 5 # 全连接层的节点个数 FC…
在前文中,我们介绍了LeNet的相关细节,它是由两个卷积层.两个池化层以及两个全链接层组成.卷积都是5*5的模板,stride =1,池化为MAX.整体来说它有三大特点:局部感受野,权值共享和池化.2012年ALex发布了AlexNet,他比LeNet5更深,而且可以学习更复杂的图像高维特征.接下来,我们就将一起学习AlexNet模型. 论文原文: ImageNet Classification with Deep Convolutional Neural Networks 论文翻译:AlexN…
#使用dropout解决overfitting(过拟合)问题 #如果有dropout,在feed_dict的参数中一定要加入dropout的值 import tensorflow as tf from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.preprocessing import LabelBinarizer #load data…
随着科研人员在使用神经网络训练时不断的尝试,为我们留下了很多有用的技巧,合理的运用这些技巧可以使自己的模型得到更好的拟合效果. 一 利用异或数据集演示过拟合 全连接网络虽然在拟合问题上比较强大,但太强大的拟合效果也带来了其它的麻烦,这就是过拟合问题. 首先我们看一个例子,这次将原有的4个异或带护具扩充成了上百个具有异或特征的数据集,然后通过全连接网络将它们进行分类. 实例描述:构建异或数据集模拟样本,在构建一个简单的多层神经网络来拟合其样本特征,观察其出现前泥河的现象,接着通过增大网络复杂性的方…
过拟合,在Tom M.Mitchell的<Machine Learning>中是如何定义的:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据. 也就是说,某一假设过度的拟合了训练数据,对于和训练数据的分布稍有不同的数据,错误率就会加大.这一般会出现在训练数据集比较小的情况. 深度学习中避免过拟合的方法: Dropout      2012年ImageNet比赛的获胜模型A…
1. 什么是Dropout(随机失活) 就是在神经网络的Dropout层,为每个神经元结点设置一个随机消除的概率,对于保留下来的神经元,我们得到一个节点较少,规模较小的网络进行训练. 标准网络和dropout网络: 左边是简单的模型,右边是含有dropout的模型 l: hidden layer index (隐藏层索引) z: denote the vector of inputs into layer l(表示l层的向量输入) y: output of each layer(每一层的输出)…
一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了.示意图如下: 但在测试及验证中:每个神经元都要参加运算,但其输出要乘以概率p. 二.tf.nn.dropout函数…
关于 Dropout 可以防止过拟合,出处:深度学习领域大神 Hinton,在2012年文献:<Improving neural networks by preventing co-adaptation of feature detectors>提出的. [Dropout 可以防止过拟合] 运用了dropout的训练过程,相当于训练了很多个只有半数隐层单元的神经网络(后面简称为“半数网络”),每一个这样的半数网络,都可以给出一个分类结果,这些结果有的是正确的,有的是错误的.随着训练的进行,大部…
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non…
上一篇讲了防止过拟合的一种方式,权重衰减,也即在loss上加上一部分\(\frac{\lambda}{2n} \|\boldsymbol{w}\|^2\),从而使得w不至于过大,即不过分偏向某个特征. 这一篇介绍另一种防止过拟合的方法,dropout,即丢弃某些神经元的输出.由于每次训练的过程里,丢弃掉哪些神经元的输出都是随机的,从而可以使得模型不过分依赖于某些神经元的输出,从而达到防止过拟合的目的. 需要注意的一点是:并不是简单地丢弃掉某些神经元的输出,对留下的输出,我们要改变他们的值,以保证…
当进行模型训练的时候,往往可能错过模型的最佳临界点,即当达到最大精度的时候再进行训练,测试集的精度会下降,这时候就会出现过拟合,如果能在其临界点处提前终止训练,就能得到表达力较强的模型,从而也避免了过拟合,这种方法就叫early stopping,但是这种方法多依靠人的经验和感觉去判断,因为无法准确的预测后面还有没有最佳临界值,所以这种方法更适合老道的深度学习人员,而对于初学者或者说直觉没有那么准的人,则有一种更简便的方法——dropout,它的大致意思是在训练时,将神经网络某一层的单元(不包括…
神经网络构架:主要时表示神经网络的组成,即中间隐藏层的结构 对图片进行说明:我们可以看出图中的层数分布: input layer表示输入层,维度(N_num, input_dim)  N_num表示输入层的样本个数, input_dim表示输入层的维度, 即变量的个数 hidden layer1 表示第一个隐藏层,维度(input_dim, hidden_dim1input_dim表示输入层的维度,hidden_dim1示隐藏层的维度 hidden layer2 表示第二个隐藏层,维度(hidd…
高斯分布·拟合 1.1 优美的高斯分布 中心极限定理[P79]证明均匀分布和二项分布在数据量 $N\rightarrow \infty$ 时,都会演化近似为高斯分布. 作为最晚发现的概率分布,可以假设任何不确定的实数服从高斯分布. 对于回归问题,显然目标值 $t$ ,有 $t\sim N(\mu ,\sigma ^{2})$ . $t$ 服从的高斯分布表达形式很特殊,很有趣,也很奇妙: $p(t|x,w,\beta)=N(t|y(x,w),\beta ^{-1})$      [P140] 即分…
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing co-adaptation of feature detectors” 感觉没什么好说的了,该说的在引用的这两篇博客里已经说得很清楚了,直接做试验吧 注意: 1.在模型的测试阶段,使用”mean network(均值网络)”来得到隐含层的输出,其实就是在网络前向传播到输出层前时隐含层节点的输出值都…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
other_techniques_for_regularization 随手翻译,略作参考,禁止转载 www.cnblogs.com/santian/p/5457412.html Dropout: Dropout is a radically different technique for regularization. Unlike L1 and L2 regularization, dropout doesn't rely on modifying the cost function. In…
前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural networks by preventing co-adaptation of feature detectors.中文大意为:通过阻止特征检测器的共同作用来提高神经网络的性能.本篇博文就是按照这篇论文简单介绍下Dropout的思想,以及从用一个简单的例子来说明该如何使用dropout. 基础知识:…
dropout是CNN(卷积神经网络)中的一个trick,能防止过拟合. 关于dropout的详细内容,还是看论文原文好了: Hinton, G. E., et al. (2012). "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580. 我这里简单理解为:dropout相当于同时搞了多个CNN网络,然后取它们的平均.但是…