原文链接:https://blog.csdn.net/yepeng_xinxian/article/details/82380707 1.卷积层的输出计算公式class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)参数:in_channels(int) – 输入信号的通道out_channels(int) – 卷积产生的通道…
卷积可能是现在深入学习中最重要的概念.卷积网络和卷积网络将深度学习推向了几乎所有机器学习任务的最前沿.但是,卷积如此强大呢?它是如何工作的?在这篇博客文章中,我将解释卷积并将其与其他概念联系起来,以帮助您彻底理解卷积. 已经有一些关于深度学习卷积的博客文章,但我发现他们都对不必要的数学细节高度混淆,这些细节没有以任何有意义的方式进一步理解.这篇博客文章也会有很多数学细节,但我会从概念的角度来看待他们,在这里我用每个人都应该能够理解的图像表示底层数学.这篇博文的第一部分是针对任何想要了解深度学习中…
过滤器(卷积核) 传统的图像过滤器算子有以下几种: blur kernel:减少相邻像素的差异,使图像变平滑. sobel:显示相邻元素在特定方向上的差异. sharpen :强化相邻像素的差异,使图片看起来更生动. outline:也称为edge kernel,相邻像素相似亮度的像素点设成黑,有较大差异的设为白. 更多可参考 image-kernels 在线演示不同的卷积过滤器. CNN 卷积层 CNN做的事情不是提前决定好过滤器,而是把过滤器当成参数不断调整学习,学出合适的过滤器.卷积网络的…
(一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的. 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域: 2.权值共享: 3.池化操作. 在卷积神经网络中,局部接受域表明输入图像与隐藏神经元的连接方式.在图像处理操作中采用局部视觉域的原因是:图像中的像素并不是孤立存在的,每一个像素与它周围的像素都有着相互关联,而并不是与整幅图像的像素点相关,因此采用局部视觉接受域可以类似图像的此种特性. 另外,在图像数据中存在大量的冗余数据,因此在图像处理过程中需要对这些冗余数据进行处理…
类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽.CNN方法的多层结构,在保留边缘映射的数目的同时可以有效地降低"支持向量"的个数,是通过函数复合-因式分解得到的,至于要使用多少层的网络,每一层网神经元的个数,两层之间的链接方式,理论上也应该有一般的指导规则. 参考链接:人工机器:作…
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂. 我们称 其连续的定义为: 其离散的定义为: 这两个式子有一个共同的特征: 这个特征有什么意义呢? 我们令,当n变化时,只需要平移这条直线 在上面的公式中,是一个函数,也是一个函数,例如下图所示即 下图即 根据卷积公式,求即将变号为,然后翻转变成,若我们计算的卷积值, 当n=0时: 当n=1时:…
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的…
[卷积神经网络-进化史]从LeNet到AlexNet 本博客是[卷积神经网络-进化史]的第一部分<从LeNet到AlexNet> 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/51440344 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 本系列博客是对刘昕博士的<CNN的近期进展与实用技巧>的一个扩充性资料. 主要讨论CNN的发展,并且引用刘昕博士的思路,对CNN的发展作一个更加详细…
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation 2. Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见 https://www.wikiwand.c…
验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制作 2.卷积神经网络结构 3.训练参数保存与使用 4.注意事项 5.代码实现(python3.5) 6.运行结果以及分析 1.验证码的制作 深度学习一个必要的前提就是需要大量的训练样本数据,毫不夸张的说,训练样本数据的多少直接决定模型的预测准确度.而本节的训练样本数据(验证码:字母和数字组成)通过调…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…
Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被提出.BN 是深度学习进展中里程碑式的工作之一,无论是希望深入了解深度学习,还是在实践中解决实际问题,BN 及一系列改进 Normaliza…
来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被…
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题.比如在下面的这个问题中:如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类.但如果情况变得复杂了一点呢?在上图中(图片来源),数据就变成了…
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题. 比如在下面的这个问题中: 如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类. 但如果情况变得复杂了一点呢?在上图中(图片来源),数据…
刚入门深度学习时,没有显存的概念,后来在实验中才渐渐建立了这个意识. 下面这篇文章很好的对GPU和显存总结了一番,于是我转载了过来. 作者:陈云 链接:https://zhuanlan.zhihu.com/p/31558973 来源:知乎 深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为"资源" 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡 并纠正几个误区: 显存和GPU等价,使用GPU主要看显存的使用? Batch Size 越大,程序越快…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…
模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attention Mechanism目前非常流行,广泛应用于机器翻译.语音识别.图像标注(Image Caption)…
[神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合我认知的习惯,而不是单纯的将别的地方的知识复制过来,这样并起不到好的总结效果.相反,如果能够将自己的体会写下来,当有所遗忘时还能顺着当时总结的认识思路,重新"辨识"起来,所以,要总结,而不要搬运知识. 起初并不理解卷积神经的卷积与结构是什么,后来通过了一个比较好的例子才对卷积神经网络有了初…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
Batch Normlization(BN) 为什么要进行 BN 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 另外对一些激活函数具有饱和区,比如 sigmoid 函数的输入较大和较小,此时的梯度很小,这会导致权重更新十分缓慢.又比如下图的 tanh 函数: 如果输入的数值没有 BN 那么数据可能在两…
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 对于每一层网络得到输出向…
现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象. 首先了解一下dropout的实现原理: 这些理论的解释在百度上有很多.... 这里重点记录一下怎么实现这一技术 参考别人的博客,主要http://www.cnblogs.com/dupuleng/articles/4340293.html 讲解一下用Matlab中的深度学习工具箱怎么实现dropout 首先要载入工具包.DeepLearn Toolbox是一个非常有用的matlab deep learning工…
转自:http://www.airghc.top/2016/11/10/Dection-DDos/ 最近研究了一篇论文,关于检测DDos攻击,使用了深度学习中 栈式自编码的算法,现在简要介绍一下内容论文下载 讨论班讲解pdf-by airghc ppt DDOS: Distributed Denial of Service(分布式拒绝服务)Purpose:disrupting transactions and access to databasesThe attack on the applic…
中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种“basis”: 从图9可以引出另外一种理解,也可以将Attention机制看作一种软寻址(SoftAddressing):Source可以看作存储器内存储的内容,元素由地址Key和值Value组成,当前有个Key=Query的查询,目的是取出存储器中对应的Value值,即Attention数值.通过Quer…
详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Batch Norm 大法自 2015 年由Google 提出之后,就成为深度学习必备之神器.自 BN 之后, Layer Norm / Weight Norm / Cosine Norm 等也横空出世.本文从 Normalization 的背景讲起,用一个公式概括 Normalization 的基本思…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 磐石 介绍 数据科学研究者们最常遇见的问题之一就是怎样避免过拟合.你也许在训练模型的时候也遇到过同样的问题–在训练数据上表现非同一般的好,却在测试集上表现很一般.或者是你曾在公开排行榜上名列前茅,却在最终的榜单排名中下降数百个名次这种情况.那这篇文章会很适合你. 去避免过拟合可以提高我们模型的性能. 在本文中,我们将解释过拟合的概念以及正则化如何帮助克服过拟合问题…
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l…
5.4.1 关于深度学习中的batch_size 举个例子: 例如,假设您有1050个训练样本,并且您希望设置batch_size等于100.该算法从训练数据集中获取前100个样本(从第1到第100个)并训练网络.接下来,它需要第二个100个样本(从第101到第200)并再次训练网络.我们可以继续执行此过程,直到我们通过网络传播所有样本.最后一组样本可能会出现问题.在我们的例子中,我们使用了1050,它不能被100整除,没有余数.最简单的解决方案是获取最终的50个样本并训练网络. 最终目的:  …