Pytorch训练时显存分配过程探究】的更多相关文章

对于显存不充足的炼丹研究者来说,弄清楚Pytorch显存的分配机制是很有必要的.下面直接通过实验来推出Pytorch显存的分配过程. 实验实验代码如下: import torch from torch import cuda x = torch.zeros([3,1024,1024,256],requires_grad=True,device='cuda') print("1", cuda.memory_allocated()/1024**2) y = 5 * x print(&quo…
原文链接:https://oldpan.me/archives/how-to-calculate-gpu-memory 前言 亲,显存炸了,你的显卡快冒烟了! torch.FatalError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524590031827/work/aten/src/THC/generic/THCStorage.cu:58 想必这是所有炼丹师们最不想看到的错误,没有之一.…
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440 /** * 这个例子介绍如何使用显卡内存进行绘制 下载地址 :http://files.cnblogs.com/zhanglitong/Tutorial8-%E7%9B%B4%E6%8E%A5%E5%88%86%E9%85%8D%E6%98%BE%E5%AD%98.rar 这里使用显卡缓冲区绘制,而不是使用内存缓冲区进行绘制 可以减少数据从内存传递到显存的过程…
背景 作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 使用GPU训练时,一次训练任务无论是模型参数还是中间结果都需要占用大量显存.为了避免每次训练重新开辟显存带来计算之外的开销,一般框架的做法是在真正的训练任务开始前,将每个节点的输入和输出,以及模型参数的shape计算出来并全局开辟一次,例如Caffe就是这种做法.随着深度学习模型的发展和迭代,不仅模型训练的数据shape可能发生变化,就连模型本身在训练过程中也可能发生变化,那么…
显卡使用的内存分为两部分,一部分是显卡自带的显存称为VRAM内存,另外一部分是系统主存称为GTT内存(graphics translation table和后面的GART含义相同,都是指显卡的页表,GTT 内存可以就理解为需要建立GPU页表的显存).在嵌入式系统或者集成显卡上,显卡通常是不自带显存的,而是完全使用系统内存.通常显卡上的显存访存速度数倍于系统内存,因而许多数据如果是放在显卡自带显存上,其速度将明显高于使用系统内存的情况(比如纹理,OpenGL中分普通纹理和常驻纹理). 某些内容是必…
Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性,之后更是作为Tensorflow的官方指定第三方支持开源框架.但两者在使用GPU时都有一个特点,就是默认为全占满模式.在训练的情况下,特别是分步训练时会导致显存溢出,导致程序崩溃.可以使用自适应配置来调整显存的使用情况. 一.Tensorflow1.指定显卡代码中加入 import osos.environ["CUDA_VISIBLE_…
技术背景 笔者在执行一个Jax的任务中,又发现了一个奇怪的问题,就是明明只分配了很小的矩阵空间,但是在多次的任务执行之后,显存突然就爆了.而且此时已经按照Jax的官方说明配置了XLA_PYTHON_CLIENT_PREALLOCATE这个参数为false,也就是不进行显存的预分配(默认会分配90%的显存空间以供使用).然后在网上找到了一些类似的问题,比如参考链接中的1.2.3.4,都是在一些操作后发现未释放显存,这里提供一个实例问题和处理的思路,如果有更好的方案欢迎大家在评论区留言. 问题复现…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7608916.html 参考网址: https://stackoverflow.com/questions/39758094/clearing-tensorflow-gpu-memory-after-model-execution https://github.com/tensorflow/tensorflow/issues/1727#issuecomment-285815312s tensorflo…
下面通过实验来探索Pytorch分配显存的方式. 实验 显存到主存 我使用VSCode的jupyter来进行实验,首先只导入pytorch,代码如下: import torch 打开任务管理器查看主存与显存情况.情况分别如下: 在显存中创建1GB的张量,赋值给a,代码如下: a = torch.zeros([256,1024,1024],device= 'cpu') 查看主存与显存情况: 可以看到主存与显存都变大了,而且显存不止变大了1G,多出来的内存是pytorch运行所需的一些配置变量,我们…
我最近在学使用Pytorch写GAN代码,发现有些代码在训练部分细节有略微不同,其中有的人用到了detach()函数截断梯度流,有的人没用detch(),取而代之的是在损失函数在反向传播过程中将backward(retain_graph=True),本文通过两个 gan 的代码,介绍它们的作用,并分析,不同的更新策略对程序效率的影响. 这两个 GAN 的实现中,有两种不同的训练策略: 先训练判别器(discriminator),再训练生成器(generator),这是原始论文Generative…