Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below: The Python version: 3.6.2 The Numpy version: 1.8.0rc1 The Scikit-Learn version: 0.19…
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In this exercise, you will implement regularized linear regression and use it to study models with different bias-variance properties. 1. Regularized Lin…
Regularized Linear Regression with scikit-learn Earlier we covered Ordinary Least Squares regression. In this posting we will build upon this foundation and introduce an important extension to linear regression, regularization, that makes it applicab…
1.正规化的线性回归 (1)代价函数 (2)梯度 linearRegCostFunction.m function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFU…
背景:实现一个线性回归模型,根据这个模型去预测一个水库的水位变化而流出的水量. 加载数据集ex5.data1后,数据集分为三部分: 1,训练集(training set)X与y: 2,交叉验证集(cross validation)Xval, yval: 3,测试集(test set): Xtest, ytest. 一:正则化线性回归(Regularized Linear Regression) 1,可视化训练集,如下图所示: 通过可视化数据,接下来我们使用线性回归去拟合这些数据集. 2,正则化线…
machine learning(13) --Regularization:Regularized linear regression Gradient descent without regularization                    with regularization                     θ0与原来是的没有regularization的一样 θ1-n和原来相比会稍微变小(1-αλ⁄m)<1 Normal equation without regular…
来源:https://www.cnblogs.com/jianxinzhou/p/4083921.html 1. The Problem of Overfitting (1) 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图.如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型.我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓.因此线性回归并没有很好拟合训练数据. 我们把此类情况称为欠拟合(underfit…
对于线性回归的求解,我们之前推导了两种学习算法:一种基于梯度下降,一种基于正规方程. 正则化线性回归的代价函数为: 如果我们要使用梯度下降法令这个代价函数最小化,因为我们未对theta0进行正则化,所以梯度下降算法将分两种情形: 对上面的算法中…
作业文件: machine-learning-ex5 1. 正则化线性回归 在本次练习的前半部分,我们将会正则化的线性回归模型来利用水库中水位的变化预测流出大坝的水量,后半部分我们对调试的学习算法进行了诊断,并检查了偏差和方差的影响. 1.1 可视化数据集 x表示水位变化,y表示水流量.整个数据集分成三个部分 模型的训练集,用来从X,y中学习参数. 交叉验证集,从Xval, yval中决定正则化参数 测试集,用来预测的样本,从数据集为 Xtest, ytest. 绘制的图像如图1 1.2 正则化…
本节主要是练习regularization项的使用原则.因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象.因此在模型的损失函数中,需要对模型的参数进行“惩罚”,这样的话这些参数就不会太大,而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象. Regularized linear regression From looking at this plot, it seems that fitting a straight li…