<OpenCV计算机视觉编程攻略(第3版)>这套书已经出到第3版了,如果你非要我说这本书有多好,我说不出来:只是很多我第一手的例子都是来源于这本书的-相比较OpenCV官方提供的代码,这本书的例子提供了更好的帮助.所以说这里我还将继续这个工作,将来我自己出书的时候这种模式也是可选的.      这里我要做的是第11章,关于3维重建的相关内容.[读书,做例子,多么轻松的学生岁月--] 例子11.2.1 获得图片的角点并且绘制出来. // GOCVHelper.cpp : 定义控制台应用程序的入口…
通过前面的相机标定,我们能够获得一些参数模型.但是这些相机的参数矩阵到底是什么意思?怎样才能够判断是否正确?误差都会来自哪里?这里就必须要通过具体实验来加深认识.采集带相机参数的图片具有一定难度,幸好我之前有着不错的积累-这里一共有两款数据集,一款来自<OpenCV计算机视觉编程攻略>第3版,家里面好像还有一款微单可以进行采集,这样我们可以进行交叉比对,看一看获得的参数是否符合实际情况: 数据集1 来自<OpenCV计算机视觉编程攻略>第3版          数据集2来自家中&q…
既然已经能够找到了标定点,那么下边的工作就是使用标定结果了.[这本书在这里的内容组织让人莫名其妙]但是通过阅读代码能够很方便地串起来. /*------------------------------------------------------------------------------------------*\ This file contains material supporting chapter 11 of the book: OpenCV3 Computer Vision …
v当我们构建成功了viz,就可以使用3维效果给我们提供的便利,进一步进行一些3维的操作. 在这个动画中,注意图片后面的那个黑线,对应的是相机的位置. /*------------------------------------------------------------------------------------------*\ This file contains material supporting chapter 11 of the book: OpenCV3 Computer …
一.问题提出         ViZ对于显示3维的效果图来说,非常有帮助:我在使用OpenCV进行双目测距的过程中,有一些参数希望能够通过可视化的方法显示出来,所以参考了这方面相关的资料.做了一些实验,这里整理如下.这篇文章主要讲的是环境架设,并且假设阅读者已经有成功编译OpenCV的经验.出于系统稳定的考虑,我没有选择最新版本,而是使用了OpenCV3.2+VIZ6.3.0,编译环境为vs2012. 二.具体步骤  1.下载安装cmake,下载链接:https://github.com/Kit…
最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~ 双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道怎么做,要么就是直接代码一贴,让你懵逼. 所以今天我想做的,是尽量给大家一个明确的阐述,并且能够上手做出来. 一. 标定 首先我们要对摄像头做标定,具体的公式推导在learning opencv中有详细的解释,这里顺带提一句,这本书虽然确实老,但有些理论.算法类的东西里面还是讲的很不错的,必要的时候…
基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影. OpenCV 起始于 1999 年 Intel 的一个内部研究项目.从那时起,它的开发就一直很活跃.进化到现在,它已支持如 OpenCL 和 OpenGL 的多种现代技术,也支持如 iOS…
卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接,比较详细了,如果想详细了解应该看下那篇开篇论文,已经有人翻译成了中文. http://zh.wikipedia.org/zh/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2 卡尔曼滤波器 – Kalman Filter 1.    什么是卡尔曼滤波器(Wh…
一.引言 上篇文章中四种方法对图像进行倾角矫正都非常有效.Hough变换和Radon相似,其抗干扰能力比较强,但是运算量大,程序执行慢,其改进方法为:我们可以不对整幅图像进行操作,可以在图像中选取一块(必须含有一条与倾角有关的直线)进行操作,从而减小运算量.这里Hough变换法和Radon变换法进行倾角检测的最大精度为1度.它们的优点是可以计算有断点的直线的倾角.最小二乘法的优点就是运算量小,但是其抗干扰能力比较差,容易受到噪声的影响.两点法虽然理论简单,但由于采样点比较多而且这些点服从随机分布…
代码地址如下:http://www.demodashi.com/demo/12966.html 记得把这几点描述好咯:代码实现过程 + 项目文件结构截图 + 演示效果 1.准备工作 1.1 训练集和测试集准备 先将数据集手动划分成训练集和测试集,并分好类,比如第一类就放在文件夹名为0的文件夹下,第二类就是1,如此类推. 当前程序只能处理10类以下车标,因为当前程序逻辑不支持10以上的数字识别(具体可以仔细看下代码) 所有训练集的图片放在train文件夹中,测试集放在test文件夹下.最终的文件树…