基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2pmml-0.76.1. 1.训练数据house_price.csv No square_feet price 1 150 6450 2 200 7450 3 250 8450 4 300 9450 5 350 11450 6 400 15450 7 600 18450 2.训练.保存模型 impo…
一.概述   对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的是pmml的跨平台部署方式.   PMML(Predictive Model Markup Language,预测模型标记语言)是一种基于XML描述来存储机器学习模型的标准语言.如,对在Python环境中由sklearn训练得到的模型,通过sklearn2pmml模块可将它完整地保存为一个pmml格…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这…
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =…
Introduction A lot of Machine Learning (ML) projects, amateur and professional, start with an aplomb. The early excitement with working on the dataset, answering the obvious & not so obvious questions & presenting the results are what everyone of…
在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环境比如Java,为了上一个机器学习模型去大动干戈修改环境配置很不划算,此时我们就可以考虑用预测模型标记语言(Predictive Model Markup Language,以下简称PMML)来实现跨平台的机器学习模型部署了. 1. PMML概述 PMML是数据挖掘的一种通用的规范,它用统一的XML…
本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. 先决条件 本文假设您对Docker有一定的了解.构建和部署示例应用程序还需要以下软件/依赖项.重要的是要注意应用程序是在Ubuntu 16.04 PC上构建的,但所有软件都是跨平台的,应该适用于任何环境. Docker Azure CLI .NET Core 2.0 Docker Hub Accou…
在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法. 1. tensorflow模型的跨平台上线的备选方案 tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方…
机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理.编排容器.Kubernetes的理论知识不是本文讨论的重点,这里不再赘述,有关Kubernetes的优点读者可自行Google.笔者整理的Kubernetes入门系列重点是如何实操,前三节介绍了Kubernets的安装.Dashboard的安装,以及如何在Kubernetes中部署一个无状态的应用,本节将讨论如何在Kubernetes中部署一个可对外服务的Tensorfl…
针对前文所述 机器学习模型部署摘要 中docker+fastapi部署机器学习的一个完整示例 outline fastapi简单示例 基于文件内容检测的机器学习&fastapi 在docker容器部署 Install pip install fastapi pip install "uvicorn[standard]" example from typing import Optional from fastapi import FastAPI #创建FastAPI实例 app…
使用docker部署模型的好处在于,避免了与繁琐的环境配置打交道.使用docker,不需要手动安装Python,更不需要安装numpy.tensorflow各种包,直接一个docker就包含了全部.docker的方式是如今部署项目的第一选择. 一.docker用法初探 1.安装 docker安装需要两个命令: sudo apt-get install docker sudo apt-get install docker.io 好的学习资料不必远求 docker --help docker run…
1. 什么是API 当调包侠们训练好一个模型后,下一步要做的就是与业务开发组同学们进行代码对接,以便这些‘AI大脑’们可以顺利的被使用.然而往往要面临不同编程语言的挑战,例如很常见的是调包侠们用Python训练模型,开发同学用Java写业务代码,这时候,Api就作为一种解决方案被使用. 简单地说,API可以看作是顾客与商家之间的联系方式.如果顾客以预先定义的格式提供输入信息,则商家将获得顾客的输入信息并向其提供结果. 从本质上讲,API非常类似于web应用程序,但它没有提供一个样式良好的HTML…
  在文章NLP(十五)让模型来告诉你文本中的时间中,我们已经学会了如何利用kashgari模块来完成序列标注模型的训练与预测,在本文中,我们将会了解如何tensorflow-serving来部署模型.   在kashgari的官方文档中,已经有如何利用tensorflow-serving来部署模型的说明了,网址为:https://kashgari.bmio.net/advance-use/tensorflow-serving/ .   下面,本文将介绍tensorflow-serving以及如…
机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰的认识: 项目描述 利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试: 项目分析 数据集字段解释: RM: 住宅平均房间数量: LSTAT: 区域中被认为是低收入阶层的比率: PTRATIO: 镇上学生与教师数量比例: MEDV: 房屋的中值价格(目标特征,…
最近老山完成了对mask-rcnn在modelarts上的部署,部署模型来自于这个项目.部署的过程大体和我的上篇文章使用modelarts部署bert命名实体识别模型相似,许多细节也不在赘述.这篇文章主要介绍下大体的思路.遇到的问题和解决方案,文章结尾会附录运行需要的程序. 部署思路 生成savedModel 原模型是使用tensorflow做backend的keras模型.源程序中的keras模型又被封装在MaskRCNN类中.我们要先取出被封装的keras模型,在源程序提供的demo.ipy…
1. Python环境设置和Flask基础 使用"Anaconda"创建一个虚拟环境.如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置,"Anaconda"发行版是一个不错的选择. 安装here wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh source…
Jerry之前的两篇文章介绍了如何通过Restful API的方式,消费SAP Leonardo上预先训练好的机器学习模型: 如何在Web应用里消费SAP Leonardo的机器学习API 部署在SAP Cloud Platform CloudFoundry环境的应用如何消费 当时Jerry提到,Product Image Classification API只支持29种产品类别: 如果我们开发应用时需要支持额外的产品类别,就得需要自行提供该产品类别的图片并重新训练. 下面是SAP Leonar…
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一个连续值,当然这也是一个非常经典的机器学习案例Boston housing 如果想了解更多的知识,可以去我的机器学习之路 The Road To Machine Learning通道 @ 目录 活动背景 数据介绍 详细代码解释 导入Python Packages 读入数据 Read-In Data…
通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工作,sklearn提供了GridSearch-网格搜索方法,我们只需要将每一个参数的取值告诉它,网格搜索将使用交叉验证方法对所有情况进行验证,并返回结果最好的组合. from sklearn.model_selection import GridSearchCV param_grid = [ # 1…
0.引言  利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑:   使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用python 3 开发,借助Dlib进行 人脸嘴部20个特征点坐标(40维特征)的提取, 然后根据这 40维输入特征 和 1维特征输出(1代表有微笑 / 0代表没微笑)进行ML建模, 利用几种机器学习模型进行建模,达到一个二分类(分类有/无笑脸)的目的,然后分析模型识别精度和性能,并且可以识别给定图片的人脸是…
0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD随机梯度下降模型,Stochastic Gradient Descent 3. SVC支持向量分类模型,Support Vector Classification 4. MLP多层神经网络模型,Multi-Layer Perceptron 主要内容:生成手写体随机数1-9,生成单个png分类存入指定…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型…
目录 .NET Core跨平台部署 1. Windows-IIS 1.1 安装.NET Core Windows Server Hosting 1.2 配置应用程序池 1.3 使用发布文件 2 Linux 2.1 添加.NET产品依赖 2.2 安装.NET SDK 2.3 创建你的应用 2.4 运行应用 2.5 创建web应用 2.6 从外网访问web应用 .NET Core跨平台部署 1. Windows-IIS 大家对于在IIS上部署.NET站点已经驾轻就熟了,部署.NET Core也没有什…
https://blog.csdn.net/starzhou/article/details/72819374 2017-05-27 19:15:36     GMIS 2017    10 0 5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕.中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃为本次大会做了开幕式致辞,他表示:「我个人的看法是再过几年,我们90%的工作是人工智能提供的,就像我们今天大部分工作是机器提供…
0.引言 介绍了如何生成手写体数字的数据,提取特征,借助 sklearn 机器学习模型建模,进行识别手写体数字 1-9 模型的建立和测试. 用到的几种模型: 1. LR,Logistic Regression, (线性模型)中的逻辑斯特回归 2. Linear SVC,Support Vector Classification, (支持向量机)中的线性支持向量分类  3. MLPC,Multi-Layer Perceptron Classification,    (神经网络)多层感知机分类 4…
目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib.font_manager import FontProperties from sklearn.linear_model import LinearReg…
scikit-learn系列之如何存储和导入机器学习模型   如何存储和导入机器学习模型 找到一个准确的机器学习模型,你的项目并没有完成.本文中你将学习如何使用scikit-learn来存储和导入机器学习模型.你可以把你的模型保持到文件中,然后再导入内存进行预测. 1. 用Pickle敲定你的模型 Pickle是python中一种标准的序列化对象的方法.你可以使用pickle操作来序列化你的机器学习算法,保存这种序列化的格式到一个文件中.稍后你可以导入这个文件反序列化你的模型,用它进行新的预测.…
混沌系统以及机器学习模型 概述: 必要条件下: negative values of the sub-Lyapunov exponents. 通过rc方法, 可以在参数不匹配的情况下,实现输入信号,混沌系统中实现同步: 第一段: 混沌系统的同步是一个非线性问题: 分析了混沌系统同步的历史, 和分类(完全同步,相位同步,滞后同步,广义同步汉化) 第二段: 和往常的混沌系统方程已知不同,我们采用机器学习方法应用于未知方程的混沌模型: 通过RC,一个输入信号可以应用于混沌模型: 层叠式的同步也可以应用…
在机器学习中,当确定好一个模型后,我们需要将它保存下来,这样当新数据出现时,我们能够调出这个模型来对新数据进行预测.同时这些新数据将被作为历史数据保存起来,经过一段周期后,使用更新的历史数据再次训练,得到更新的模型. 如果模型的流转都在python内部,那么可以使用内置的pickle库来完成模型的存储和调取. 什么是pickle?pickle是负责将python对象序列化(serialization)和反序列化(de-serialization)的模块.pickle模块可以读入任何python对…