算法起步之Prim算法】的更多相关文章

原文:算法起步之Prim算法 prim算法是另一种最小生成树算法.他的安全边选择策略跟kruskal略微不同,这点我们可以通过一张图先来了解一下. prim算法的安全边是从与当前生成树相连接的边中选择一条最短的一条,并且该边是应是生成树与生成树外一点的连接. 所以我们prim算法用汉字描述的过程应为:1初始化2构造最小优先队列,将所有节点都加入到最小优先队列中,所有节点的key设置为无穷大,开始节点设置成0.3循环,直到队列为空{取出key值最小的节点加入到生成树中,变量与key相连接的边,看是…
原文:算法起步之Kruskal算法 说完并查集我们接着再来看这个算法,趁热打铁嘛.什么是最小生成树呢,很形象的一个形容就是铺自来水管道,一个村庄有很多的农舍,其实这个村庄我们可以看成一个图,而农舍就是图上的每个节点,节点之间有很多的路径,而铺自来水管道目的就是为了让每家都能用上自来水,而至于自来水怎么铺就不关心了,而铺管子的人就会想如何才能最生材料,那么最省材料的一条路径就是我们这个图的最小生成树.而如何去构建一个最小生成树呢?这个就用到了我们之前说的贪心策略.这里的觉得点就是一直寻找安全边,所…
原文:算法起步之Dijkstra算法 友情提示:转载请注明出处[作者 idlear    博客:http://blog.csdn.net/idlear/article/details/19687579] Dijkstra算法是解决带权重有向图上的单源最短路径问题,必须路径值都为正数.如果实现方式合适的话,他的运行时间要低于我们之前介绍的Bellman-Ford算法的运行时间.如果介绍Dijkstra算法的过程你会发现他其实跟我们直接介绍的prim算法非常的相似.他们都是维护一个最小优先队列,最小…
原文:算法起步之Bellman-Ford算法 从这篇开始我们开始介绍单源最短路径算法,他是图算法之一,我们前面说的贪心,图的遍历,动态规划都是他的基础,单源最短路径其实说的就是图中节点到节点的最短路径.就像我们使用百度地图从哪到哪一样,找出最近的距离,而单源最短路径问题不只是两点之间的路径,他有很多的变形,像单目的地最短路径问题,单节点对最短路径问题,所有节点对最短路径问题,最短路径的最优子结构问题. 在介绍这类算法之前我们先规定节点的基本属性,我们规定节点都有一个key值,key值记录的是开始…
原文:一步一步写算法(之prim算法 下) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 前两篇博客我们讨论了prim最小生成树的算法,熟悉了基本的流程.基本上来说,我们是按照自上而下的顺序来编写代码的.首先我们搭建一个架构,然后一步一步完成其中的每一个子功能,这样最后构成一个完成prim算法计算过程.  f)将DIR_LINE队列中不符合的数据删除,主要是双节点都已经访问过的DIR_LINE数据. void delete_unvali…
原文:一步一步写算法(之prim算法 中) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] C)编写最小生成树,涉及创建.挑选和添加过程 MINI_GENERATE_TREE* get_mini_tree_from_graph(GRAPH* pGraph) { MINI_GENERATE_TREE* pMiniTree; DIR_LINE pDirLine; if(NULL == pGraph || NULL == pGraph->hea…
原文:一步一步写算法(之prim算法 上) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 前面我们讨论了图的创建.添加.删除和保存等问题.今天我们将继续讨论图的一些其他问题,比如说如何在图的环境下构建最小生成树.为什么要构建最小生成树呢?其实原理很简单.打个比方,现在某一个乡镇有n个村,那么这n个村肯定是联通的.现在我们打算在各个村之间搭建网线,实现村村通的工程.那么有什么办法可以实现村村互通,同时又使得最后的总距离最小呢?要达到这个目…
数据结构与算法--最小生成树之Prim算法 加权图是一种为每条边关联一个权值或称为成本的图模型.所谓生成树,是某图的一棵含有全部n个顶点的无环连通子图,它有n - 1条边.最小生成树(MST)是加权图的一棵权值和(所有边的权值相加之和)最小的生成树. 要注意以下几点: 最小生成树首先是一个生成树,所以我们研究的是无环连通分量: 边的权值可能是0也可能是负数 边的权值不一定表示距离,还可以是费用等 加权无向图的实现 之前图的实现都没有考虑权值,而权值存在于边上,所以最好是将"边"这个概念…
一. 关于最小生成树 对于无向连通图G=(V,E),其中V表示图的顶点,E表示图的边,对于每条边都有一个权值,可以理解为边a->b的权值C为从a走到b要走的路程为C.现在我们希望找到一个无回路的子集T,且有T是E的子集,T连接了所有的顶点,且其权值和最小.那么这样一个子图G‘=(V,T)称之为图G的最小生成树. 二. 最小生成树的基本性质 最小生成树的边数|T|必然服从|T|=|V|-1. 最小生成树不可以有循环 最小生成树不必是唯一的. 三. Prim算法 对于最小生成树有两种算法:prim算…
在图论中,求MST的Prim算法和求最短路的Dijskra算法非常像.可是我一直都对这两个算法处于要懂不懂的状态,现在,就来总结一下这两个算法. 最小生成树(MST)—Prim算法: 算法步骤: •将顶点集V分成两个集合A和B,其中集合A表示目前已经在MST中的顶点,而集合B则表示目前不在MST中的顶点. •寻找与集合A连通的最短的边(u,v),将这条边加入最小生成树中.(此时,与(u,v)相连的顶点,不妨设为Bi,也应加入集合A中. •重复第二步,直至集合B为空集. 正确性证明: 1.由归纳法…