我的Pandas应用场景(2)】的更多相关文章

声明 工作后,很不幸的成为了团队中的QA.QA这个角色吧,说起来高大上,实际很苦逼,一句话概括一下:吃力不讨好!作为新人,公司每月一分钱没少我,至少现在跟开发的待遇是一样的,所以我还是得兢兢业业的对待自己的工作. 项目越做越复杂,写验收测试的时候,往往验收场景容易构造,但是该场景下的预期数据.甚至是原始数据太难构造了,尤其我是处于通信行业,数据库的表数据字段极其多.数据表也极其的多.不怕大家笑话,我开始的时候是通过Scala的函数式编程,一点一点的自己写程序维护表的字段名称.数据的split(还…
上文交代了一些啰嗦事,本文开始,就要来点实际的了. 先来一个比较简单的场景: Given:一个包括N(极其复杂,这里取3个)个列的DataFrame:df,df包括index: And:对df所有列元素进行一些处理,得到df的一个变换后的df_new; And:对df_new的某些列做极其复杂的判断,得到新的列result: When:需要将要根据result对df进行分析: Then:将result追加到df中. 上述的场景是我的一个算法验证的场景,简单地说,就是需要通过对原始数据进行变换,然…
pandas中df.ix, df.loc, df.iloc 的使用场景以及区别: https://stackoverflow.com/questions/31593201/pandas-iloc-vs-ix-vs-loc-explanation # Note: in pandas version 0.20.0 and above, ix is deprecated and the use of loc and iloc is encouraged instead. # First, a reca…
本文原创,转载请标识出处: http://www.cnblogs.com/xiaoxuebiye/p/7223774.html 导入数据: pd.read_csv(filename):从CSV文件导入数据 pd.read_table(filename):从限定分隔符的文本文件导入数据 pd.read_excel(filename):从Excel文件导入数据 pd.read_sql(query, connection_object):从SQL表/库导入数据 pd.read_json(json_st…
pandas读取文件官方提供的文档 在使用pandas读取文件之前,必备的内容,必然属于官方文档,官方文档查阅地址 http://pandas.pydata.org/pandas-docs/version/0.24/reference/io.html 文档操作属于pandas里面的Input/Output也就是IO操作,基本的API都在上述网址,接下来本文核心带你理解部分常用的命令 pandas读取txt文件 读取txt文件需要确定txt文件是否符合基本的格式,也就是是否存在\t,` ,,`等特…
前言: 最近公司有数据分析的任务,如果使用Python做数据分析,那么对Pandas模块的学习是必不可少的: 本篇文章基于Pandas 0.20.0版本 话不多说社会你根哥!开干! pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas==0.20.0 一.数据分析需要的基本数据结构 数据统计.分析建立在二维表为基础数据结构之上,每一行称为1个Case,每1列成为1个variable : 按列分析:分析每 1个变量的变化.趋势…
numpy: 仨属性:ndim-维度个数:shape-维度大小:dtype-数据类型. numpy和pandas各def的axis缺省为0,作用于列,除DataFrame的.sort_index()和.dropna()外.   import numpy as np   相同值=np.ones((3,5),int)  #同类:np.zeros(),np.empty():首参shape用()或[]均可 转换类型=相同值.astype(np.float64) #转换行列=相同值.transpose()…
  对网站日记分析其实比较常见,今天模拟演示一下一些应用场景,也顺便说说Pandas,图示部分也简单分析了下 1.数据清洗¶ 一般数据都不可能直接拿来用的,或多或少都得清理一下,我这边就模拟一下清洗完的数据 In [1]: %%time import numpy as np import pandas as pd   Wall time: 520 ms In [2]: %%time # 生成一个2017年的所有时间点(分钟为单位) datetime_index = pd.date_range("…
假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字 那么可以用python的pandas库来实现. 方法一: pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多.如下是相关代码: import pandas as pd data = [["str","ewt","earw"],[&quo…
一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_range(start='2019-04-01',periods=20) dates 用这20个索引作为ts的索引 ts = pd.Series(np.random.randn(20),index=dates) ts 不同索引的时间序列之间的算术运算在日期上自动对齐 ts + ts[::2] pandas使…
pandas(我所用版本0.17)是一个强大数据处理库,在开发金融类系统中我应用到了pandas.Dataframe数据类型,它的数据结构类似一张图表(如下图所示),左边一列为index既行的索引: 图1 下面主要介绍在开发中使用方法: 1,DataFrame将1分钟K线数据合成5分钟数据 pd_1m = pd.DataFrame() #已有1分钟K线数据 #合成新K线的前提是df的数据的index必须是时间 pd_1m = pd_1m.set_index('kline_time') #将时间戳…
一.Series 类似于一位数组的对象,第一个参数为数据,第二个参数为索引(索引可以不指定,就默认用隐式索引) Series(data=np.random.randint(1,50,(10,))) Series(data=[1,2,3],index=('a','b','c')) dic={'math':88,'chinese':99,'english':50} Series(data=dic)对于data来说,可以是列表.np数组.字典,当用字典时,字典的key会成为行索引 1,索引和切片 用中…
目录 数据读取 数据探索 数据清洗 数据清洗 类型转换 缺失值 重复值 值替换 修改表结构 新增列 删除列 删除行 修改列名 数据分组(数值变量) 数据分列(分类变量) 设置索引 排序 数据筛选/切片 多表拼接 数据聚合&分组运算 groupby aggregate filter tansformation 数据透视表 crosstab pivot/pivot_table 时间序列 时间格式转化 时间索引操作 哑编码 数据导出 数据入库 技巧 数据集概览 长宽表转换 宽表转换为长表 长表转换为宽…
本文的例子需要一些特殊设置,具体可以参考 Pandas快速入门(一) 数据清理和转换 我们在进行数据处理时,拿到的数据可能不符合我们的要求.有很多种情况,包括部分数据缺失,一些数据的格式不正确,一些数据的标注问题等等.对于这些数据,我们在开始分析之前必须进行必要的整理.清理. 清理和转换的过程中用到最对的包括判断是否存在空值(obj.isnull),删除空值(dropna).填充空值(fillna).大小写转换.文字替换(replace)等等.我这里挑几个典型的场景来学习一下. 判断是否存在有空…
有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Application可以直接运行在YARN集群上,这种运行模式,会将资源的管理与协调统一交给YARN集群去处理,这样能够实现构建于YARN集群之上Application的多样性,比如可以运行MapReduc程序,可以运行HBase集群,也可以运行Storm集群,还可以运行使用Python开发机器学习应用程序,等等…
原文链接:https://junjiecai.github.io/posts/2016/Oct/20/none_vs_nan/ 建议从这里下载这篇文章对应的.ipynb文件和相关资源.这样你就能在Jupyter中边阅读,边测试文中的代码. python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据.但它们的行为在很多场景下确有一些相当大的差异.由于不熟悉这些差异,曾经给我的工作带来过不少麻烦. 特此整理了一份详细的实验,比较None和NaN在不同…
python和java,.net,php web平台交互最好使用web通信方式,不要使用Jypython,IronPython,这样的好处是能够保持程序模块化,解耦性好 python允许使用'''...'''方式来表示多行代码: >>> print(r'''Hello, ... Lisa!''') Hello, Lisa! >>> >>> print('''line1 ... line2 ... line3''') line1 line2 line3…
在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境 CPU:3.5 GHz Intel Core i7 内存:32 GB HDDR 3 1600 MHz 硬盘:3 TB Fusion Drive 数据分析…
转载自https://blog.csdn.net/blackyuanc/article/details/77892784 问题场景:       在读取CSV文件后,在新增一个特征列并根据已有特征修改新增列的值,结果在修改的过程中碰到SettingWithCopyWarning警告. 报错的做法: import pandas as pd import numpy as np aa = np.array([1,0,1,0]) bb = pd.DataFrame(aa.T, columns=['on…
DataFrame DataFrame是一个表格型的数据结构,含有一组有序的列,是一个二维结构. DataFrame可以被看做是由Series组成的字典,并且共用一个索引. 一.生成方式 import numpy as np import pandas as pd a=pd.DataFrame({'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([1,2,3,4],index=['b','a','c','d'])}) a…
python pandas库——pivot使用心得 2017年12月14日 17:07:06 阅读数:364 最近在做基于python的数据分析工作,引用第三方数据分析库——pandas(version 0.16). 在做数据统计二维表转换的时候走了不少弯路,发现pivot()这个方法可以解决很多问题,让我少走一些弯路,节省了大量的代码.于是我这里对于pandas下dataframe的pivot()方法进行学习总结和应用,以便回顾和巩固知识. 以统计学生成绩信息为例. 在做学生成绩信息统计的时候…
整理pandas操作 本文原创,转载请标识出处: http://www.cnblogs.com/xiaoxuebiye/p/7223774.html 导入数据: pd.read_csv(filename):从CSV文件导入数据 pd.read_table(filename):从限定分隔符的文本文件导入数据 pd.read_excel(filename):从Excel文件导入数据 pd.read_sql(query, connection_object):从SQL表/库导入数据 pd.read_j…
上一节,我们已经安装了numpy,基于numpy,我们继续来看下pandas pandas用于做数据分析与数据挖掘 pandas安装 使用命令 pip install pandas 出现上图表示安装成功. pandas又两大数据结构,数据分析相关的都围绕着这两种结构进行: ①Series ②DataFrame Series用于存储序列这样的一维数据,DataFrame用于存储多维数据 Series对象 主要有2个相关联的数组组合在一起:①主元素数组 ②Index数组 index value 0…
1. Series对象 由于series对象很简单,跟数组类似,但多了一些额外的功能,偷个懒,用思维导图表示 2. DaraFrame对象 DataFrame将Series的使用场景由一维扩展到多维,数据结构跟Excel工作表极为相似,说白了就是矩阵 1. 定义DataFrame对象 DataFrame对象的构造分三部分:数据data,行标签index和列标签columns,下面给出三种构造方法 data = {'color':['blue','green','yellow','red','wh…
原文来源:http://pbpython.com/pandas-list-dict.html 介绍 每当我使用pandas进行分析时,我的第一个目标是使用众多可用选项中的一个将数据导入Pandas的DataFrame . 对于绝大多数情况下,我使用的 read_excel , read_csv 或 read_sql . 但是,有些情况下我只需要几行数据或包含这些数据里的一些计算. 在这些情况下,了解如何从标准python列表或字典创建DataFrames会很有帮助. 基本过程并不困难,但因为有几…
一.简介 categorical是pandas中对应分类变量的一种数据类型,与R中的因子型变量比较相似,例如性别.血型等等用于表征类别的变量都可以用其来表示,本文就将针对categorical的相关内容及应用进行介绍. 二.创建与应用 2.1 基本特性和适用场景 在介绍具体方法之前,我们需要对pandas数据类型中的categorical类型有一个了解,categorical类似R中的因子型变量,可以进行排序操作,但不可以进行数值运算操作,其顺序在其被定义的时候一同确定,而不是按照数字字母词法排…
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方便简洁的方法,用于对单列.多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁,本文就将针对pandas中的map().apply().applymap().groupby().agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们…
我自学 python 编程并付诸实战,迄今三个月. pandas可能是我最高频使用的库,基于它的易学.实用,我也非常建议朋友们去尝试它.--尤其当你本身不是程序员,但多少跟表格或数据打点交道时,pandas 比 excel 的 VBA 简单优雅多了. pandas 善于处理表格类数据,而我日常接触的数据天然带有时间日期属性,比如用户行为日志.爬虫爬取到的内容文本等.于是,使用 pandas 也就意味着相当频繁地与时间日期数据打交道.这篇笔记将从我的实战经验出发,整理我常用的时间日期类数据处理.类…
Series 和 DataFrame还未构建完成的朋友可以参考我的上一篇博文:https://www.cnblogs.com/zry-yt/p/11794941.html 当我们构建好了 Series 和 DataFrame 之后,我们会经常使用哪些功能呢?引用上一章节中的场景,我们有一些用户的的信息,并将它们存储到了 DataFrame 中.因为大多数情况下 DataFrame 比 Series 更为常用,所以这里以 DataFrame 举例说明,但实际上很多常用功能对于 Series 也适用…
时间序列(time series)数据是一种重要的结构化数据形式,应用于多个领域,包括金融学.经济学.生态学.神经科学.物理学等.时间序列数据的意义取决于具体的应用场景,主要有以下几种: 时间戳(timestamp),特定的时刻. 固定时期(period),如2007年1月或2010年全年. 时间间隔(interval),由起始和结束时间戳表示.时期(period)可以被看做间隔(interval)的特例. 实验或过程时间,每个时间点都是相对于特定起始时间的一个度量.例如,从放入烤箱时起,每秒钟…