一.MapReduce中有哪些常见算法 (1)经典之王:单词计数 这个是MapReduce的经典案例,经典的不能再经典了! (2)数据去重 "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重. (3)排序:按某个Key进行升序或降序排列 (4)TopK:对源数据中所有数据进行排序,取出前K个数据,就是TopK. 通常可以借助堆(Heap)来实现TopK问题. (5)选择:关系代数基…
一.写在之前的 1.1 回顾Map阶段四大步骤 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排序和分组,默认情况下,是按照key进行排序和分组. 1.2 实验场景数据文件 在一些特定的数据文件中,不一定都是类似于WordCount单次统计这种规范的数据,比如下面这类数据,它虽然只有两列,但是却有一定的实践意义. 3 3 3 2 3 1 2 2 2 1 1 1 (1)如果按照第一列升序排列,当…
开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
概述 本文主要基于Hadoop 1.0.0后推出的新Java API为例介绍MapReduce的Java编程模型.新旧API主要区别在于新API(org.apache.hadoop.mapreduce)将原来的旧API(org.apache.hadoop.mapred)中的接口转换为了抽象类. MapReduce编程主要将程序运行过程分为两个阶段:Map阶段和Reduce阶段.其中Map阶段由若干Map task组成,主要由InputFormat, Mapper, Partitioner等类完成…
开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
原文:http://www.cnblogs.com/sharpxiajun/p/3151395.html(有删减) Mapreduce运行机制 下面我贴出几张图,这些图都是我在百度图片里找到的比较好的图片: 图片一: 图片二: 图片三: 图片四: 图片五: 图片六: 谈mapreduce运行机制,可以从很多不同的角度来描述,比如说从mapreduce运行流程来讲解,也可以从计算模型的逻辑流程来进行讲解,也许有些深入理解了mapreduce运行机制还会从更好的角度来描述,但是将mapreduce运…
本文给出一个实现MapReduce二次排序的例子 package SortTest; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.*; public class SortComparable implements WritableComparable<SortComparable> { private Integer fi…
通过调用fork和exec函数都能创建新的进程,但两者有着本质的区别:fork函数拷贝了父进程的内存映像,而exec函数用用新的映像来覆盖调用进程的进程映像的功能. 一  fork函数 #include <unistd.h> pid_t fork(void); //创建子进程成功时,向子进程返回0,并将子进程的进程ID返回给父进程 //创建失败时,返回-1,并将errno设置为EAGAIN 返回值是允许父进程和子进程区别自己并执行不同代码的关键特征. #include <stdio.h&…
什么是轮廓 找轮廓.绘制轮廓等 1.什么是轮廓 轮廓可看做将连续的点(连着边界)连在一起的曲线,具有相同的颜色和灰度.轮廓在形态分析和物体的检测和识别中很有用. 为了更加准确,要使用二值化图像.在寻找轮廓之前,要进行阈值化处理或者Canny边界检测. 查找轮廓的函数会修改原始图像.如果に在找到轮廓后还想使用原始图像的话,应该把原始图像存储到其他变量中. 在OpenCV中,查找轮廓就像是在黑色背景中找白色物体,要记住要找的物体应该是白色而背景应该是黑色 让我们看看如何在一个二值图像中查找轮廓: c…
Yarn减轻了JobTracker的负担,对其进行了解耦…
一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Hadoop这个开源产品的出现,打破…
Hadoop学习笔记系列   一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Had…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…
1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成,而这就是Hadoop FS Shell.它主要是用于对Hadoop平台进行文件系统的管理. 有关HDFS的介绍博客请移步:Hadoop学习笔记之Hadoop基础. 有关Hadoop FS Shell的学习文档:Hadoop FS Shell学习文档. 2. Hadoop Streaming 我们知…
转载自http://www.cnblogs.com/edisonchou/p/4288737.html Hadoop学习笔记—5.自定义类型处理手机上网日志 一.测试数据:手机上网日志 1.1 关于这个日志 假设我们如下一个日志文件,这个文件的内容是来自某个电信运营商的手机上网日志,文件的内容已经经过了优化,格式比较规整,便于学习研究. 该文件的内容如下(这里我只截取了三行): 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.1…
Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>. 2.映射(map):根据输入的<key, value>进生处理, 3.合并(combiner):合并中间相两同的key值. 4.分区(Partition):将<key, value>分成N分,分别送到下一环节. 5.化简(Reduce):将中间结…
Hadoop学习笔记(6) ——重新认识Hadoop 之前,我们把hadoop从下载包部署到编写了helloworld,看到了结果.现是得开始稍微更深入地了解hadoop了. Hadoop包含了两大功能DFS和MapReduce, DFS可以理解为一个分布式文件系统,存储而已,所以这里暂时就不深入研究了,等后面读了其源码后,再来深入分析. 所以这里主要来研究一下MapReduce. 这样,我们先来看一下MapReduce的思想来源: alert("I'd like some Spaghetti!…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…
Hadoop学习笔记(5) ——编写HelloWorld(2) 前面我们写了一个Hadoop程序,并让它跑起来了.但想想不对啊,Hadoop不是有两块功能么,DFS和MapReduce.没错,上一节我们写了一个MapReduce的HelloWorld程序,那这一节,我们就也学一学DFS程序的编写. DFS是什么,之前已经了解过,它是一个分布式文件存储系统.不管是远程或本地的文件系统,其实从接口上讲,应该是一至的,不然很难处理.同时在第2节的最后,我们列出了很多一些DFS的操作命令,仔细看一下,这…
Hadoop学习笔记(3) ——分布式环境搭建 前面,我们已经在单机上把Hadoop运行起来了,但我们知道Hadoop支持分布式的,而它的优点就是在分布上突出的,所以我们得搭个环境模拟一下. 在这里,我们采用这样的策略来模拟环境,我们使用3台ubuntu机器,1台为作主机(master),另外2台作为从机(slaver).同时,这台主机,我们就用第一章中搭建好的环境来. 我们采用与第一章中相似的步骤来操作: 运行环境搭建 在前面,我们知道,运行hadoop是在linux上运行的.所以我们单机就在…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…
Hadoop学习笔记(1) ——菜鸟入门 Hadoop是什么?先问一下百度吧: [百度百科]一个分布式系统基础架构,由Apache基金会所开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高传输率(high throughput)来访问应用程序…
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从代码分析来说明在map端是如何将map的输出保存下来等待reduce来取. 在执行每个map task时,无论map方法中执行什么逻辑,最终都是要把输出写到磁盘上.如果没有reduce阶段,则直接输出到hdfs上,如果有有reduce作业,则每个map方法的输出在写磁盘前线在内存中缓存.每个map…
Hadoop学习笔记(1) ——菜鸟入门 Hadoop是什么?先问一下百度吧: [百度百科]一个分布式系统基础架构,由Apache基金会所开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高传输率(high throughput)来访问应用程序…
Hadoop学习笔记(9) ——源码初窥 之前我们把Hadoop算是入了门,下载的源码,写了HelloWorld,简要分析了其编程要点,然后也编了个较复杂的示例.接下来其实就有两条路可走了,一条是继续深入研究其编程及部署等,让其功能使用的淋漓尽致.二是停下来,先看看其源码,研究下如何实现的.在这里我就选择第二条路. 研究源码,那我们就来先看一下整个目录里有点啥: 这个是刚下完代码后,目录列表中的内容. 目录/文件 说明 bin 下面存放着可执行的sh命名,所有操作都在这里 conf 配置文件所在…
Hadoop学习笔记(8) ——实战 做个倒排索引 倒排索引是文档检索系统中最常用数据结构.根据单词反过来查在文档中出现的频率,而不是根据文档来,所以称倒排索引(Inverted Index).结构如下: 这张索引表中, 每个单词都对应着一系列的出现该单词的文档,权表示该单词在该文档中出现的次数.现在我们假定输入的是以下的文件清单: T1 : hello world hello china T2 : hello hadoop T3 : bye world bye hadoop bye bye 输…
Hadoop学习笔记(4) ——搭建开发环境及编写Hello World 整个Hadoop是基于Java开发的,所以要开发Hadoop相应的程序就得用JAVA.在linux下开发JAVA还数eclipse方便. 下载 进入官网:http://eclipse.org/downloads/. 找到相应的版本进行下载,我这里用的是eclipse-SDK-3.7.1-linux-gtk版本. 解压 下载下来一般是tar.gz文件,运行: $tar -zxvf eclipse-SDK-3.7.1-linu…
hadoop学习笔记:hadoop文件系统浅析 https://www.cnblogs.com/sharpxiajun/archive/2013/06/15/3137765.html 1.什么是分布式文件系统? 管理网络中跨多台计算机存储的文件系统称为分布式文件系统. 2.为什么需要分布式文件系统了? 原因很简单,当数据集的大小超过一台独立物理计算机的存储能力时候,就有必要对它进行分区(partition)并存储到若干台单独计算机上. 3.分布式系统比传统的文件的系统更加复杂 因为分布式文件系统…
Ext.Net学习笔记12:Ext.Net GridPanel Filter用法 Ext.Net GridPanel的用法在上一篇中已经介绍过,这篇笔记讲介绍Filter的用法. Filter是用来过滤数据的,效果如图: 数据过滤分为两种:本地Filter和远程Filter,默认为远程过滤,也就是将查询条件拿到服务器进行查询并得到返回结果. 本地Filter 直接上代码,还是我们上一篇中的GridPanel,加入了Filter功能: <ext:GridPanel runat="server…