学习笔记TF009:对数几率回归】的更多相关文章

logistic函数,也称sigmoid函数,概率分布函数.给定特定输入,计算输出"success"的概率,对回题回答"Yes"的概率.接受单个输入.多维数据或训练集样本特征,可以用线性回归模型表达式合并成单值. 损失函数可以使用平方误差.训练集"Yes"代表100%概率或输出值1的概率.损失刻画特定样本模型分配小于1值概率."No"概率值0.损失是模型分配样本概率值并取平方.平方误差惩罚与损失同数量级情形.输出与期望相差太远…
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-05-09 15:03:50 # @Author : whb (whb@bupt.edu.cn) # @Link : ${link} # @Version : $Id$ import numpy a…
LR(对数几率回归) 函数为\(y=f(x)=\frac{1}{1+e^{-(w^{T}x+b)}}\). 由于输出的是概率值\(p(y=1|x)=\frac{e^{w^{T}x+b}}{1+e^{w^{T}x+b}},p(y=0|x)=\frac{1}{1+e^{w^{T}x+b}}\),所以求解使用极大似然估计来求解参数\(w,b\). 为了方便表示,记\(\widehat{w}=(w;b),\widehat{x}=(x;1)\) 写出似然函数\[\prod_{i=1}^{m}p(y=1|\…
目录 一.对数几率和对数几率回归 二.Sigmoid函数 三.极大似然法 四.梯度下降法 四.Python实现 一.对数几率和对数几率回归   在对数几率回归中,我们将样本的模型输出\(y^*\)定义为样本为正例的概率,将\(\frac{y^*}{1-y^*}\)定义为几率(odds),几率表示的是样本作为正例的相对可能性.将几率取对便可以得到对数几率(log odds,logit). \[logit=\log\frac{y^*}{1-y^*} \]   而对数几率回归(Logistic Reg…
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/log-likelihood_distance.html 本文是“挑子”在学习对数似然距离过程中的笔记摘录,文中不乏一些个人理解,不当之处望多加指正. 对数似然距离是基于统计理论的一种计算簇与簇相异度的方法,最早用于BIRCH层次聚类算法的改进.本文旨在详细介绍对数似然距离的统计学基础.方法思想和计算过程,希望帮助更多地人欣赏它.熟悉它.使用它. 1.极大似然估计(Maximum Likelihood Es…
  近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文将对 FM 框架进行简介,并对其训练算法 - 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行具体推导. 相关链接: (一)预測任务 (二)模型方程 (三)回归和分类 (四)学习算法 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaXRwbHVz/f…
代码比较简单,没啥好说的,就做个记录而已.大致就是现建立graph,再通过session运行即可.需要注意的就是Variable要先初始化再使用. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt # 把下载的MNIST数据集放到mnist_link目录下,用TF提供的接口解析数据集 MNIST = input_dat…
[Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为"对数几率回归",是一种分类学习方法.和先前的线性回归模型不同的是,输出的y一般是离散量的集合,如输出\(y \in \{0,1\}\)的二分类任务. 考虑二分类任务,线性回归模型产生的\(Z=\theta ^TX\)是连续的实值,需要用一个函数\(g(\theta ^TX)\)将z转换为0/1值.…
线性回归.对数几率回归模型,本质上是单个神经元.计算输入特征加权和.偏置视为每个样本输入特征为1权重,计算特征线性组合.激活(传递)函数 计算输出.线性回归,恒等式(值不变).对数几率回归,sigmoid.输入->权重->求和->传递->输出.softmax分类含C个神经元,每个神经元对应一个输出类别. XOR异或运算,无法通过线性模型解决.sigmoido类型神经元要求数据线性可分.2D数据存在直线,高维数据存在超平面,把不同类别样本分隔. 在神经网络输入和输出之间插入更多神经元…
这一章也是本书基本理论的一章,我对这章后面有些公式看的比较模糊,这一会章涉及线性代数和概率论基础知识,讲了几种经典的线性模型,回归,分类(二分类和多分类)任务. 3.1 基本形式 给定由d个属性描述的示例 x =(x1:x2:… :xd),其中xi是x在第i个属性上的取值,线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数,即: f(x) = w1x1 + w2x2 + … + wdxd + b 一般用向量形式写成: f(x) = wTx + b 其中x =(x1…
今天 学习了对数几率回归,学的不是很明白x1*theat1+x2*theat2...=y 对于最终的求解参数编程还是不太会,但是也大致搞明白了,对数几率回归是由于线性回归函数的结果并不是我们想要的,我们需要的或许只有是和不是,也就是0或1的关系,这时候我们就需要一个联系函数y=1/(1-e^(-1)) 作为桥梁这样我们就可以无限趋近于我们的0或者1. 然后就是参数估计,通过最大似然估计函数可以得到最简单的结果 最后还是需要通过梯度下降求得最终的解答 我学习的书是<机器学习西瓜书>周志华…
回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广.函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率.分量为概率,C个分量和始终为1.每个样本必须属于某个输出类别,所有可能样本均被覆盖.分量和小于1,存在隐藏类别:分量和大于1,每个样本可能同时属于多个类别.类别数量为2,输出概率与对数几率回归模型输出相同. 变量初始化,需要C个不同权值组,每个组对应一个可能输出,使用权值矩阵.每行与输入特征对应,每列与输出类别对应. 鸢尾花数据集Iris,包含4个数据特征.…
一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们都知道可以用回归模型来进行回归任务,但如果要利用回归模型来进行分类该怎么办呢?本文介绍的逻辑回归就基于广义线性模型(generalized linear model),下面我们简单介绍一下广义线性模型: 我们都知道普通线性回归模型的形式: 如果等号右边的输出值与左边y经过某个函数变换后得到的值比较贴…
目录 1. 对数几率回归 1.1 求解 ω 和 b 2. 对数几率回归进行垃圾邮件分类 2.1 垃圾邮件分类 2.2 模型评估 混淆举证 精度 交叉验证精度 准确率召回率 F1 度量 ROC AUC 1. 对数几率回归 考虑二分类任务,其输出标记 \(y \in \{0, 1\}\),记线性回归模型产生的预测值 \(z=\boldsymbol{w}^T\boldsymbol{x} + b\) 是实值,于是我们需要一个将实值 \(z\) 转换为 \(0/1\) 的 \(g^{-}(\cdot)\)…
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细推导. 1. 详细推导softmax代价函数的梯度 经典的logistics回归是二分类问题,输入向量$ x^{(i)}\in\Re^{n+1}$ 输出0,1判断\(y^{(i)}\in{\{0,1\}}\),Softmax回归模型是一种多分类算法模型,如图所示,输出包含k个类型,\(y^{(i)}\in{\…
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018-10-26机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说.不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/su…
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这…
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这时候就没法用信息增益.信息增益率.基尼系数来判定树的节点分裂了,那么回归树采用新的方式是预测误差,常用的有均方误差.对数误差等(损失函数).而且节点不再是类别,而是数值(预测值),划分到叶子后的节点预测值有不同的计算方法,有的是节点内样本均值,有的是最优化算出来的比如Xgboost. XGBoost…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
1.李航<统计学习方法>: 2.https://blog.csdn.net/laobai1015/article/details/78113214 3.http://www.cnblogs.com/bentuwuying/p/6616680.html 4.http://kyonhuang.top/Andrew-Ng-Deep-Learning-notes/#/Neural_Networks_and_Deep_Learning/神经网络基础 O.逻辑斯蒂回归的缘起 起源于线性回归.线性回归是一种…
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从维基百科给出的定义可以看出,深度学习有两个非常重要的特性——多层和非线性.那么为什么要强调这两个性质呢?下面我们开始学习. 1,线性模型的局限性 在线性模型中,模型的输出为输入的加权和.假设一个模型的输出 y  和输入 xi 满足以下关系,那么这个模型就是一个线性模型: 其中,wi , b € R…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
TensorFlow学习笔记5-概率与信息论 本笔记内容为"概率与信息论的基础知识".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵,其大小为m行n列,m表示训练集的大小(size),n表示特征的个数: \(W\)表示权重矩阵,其大小是n行k列,n为输入特征的个数,k为输出(特征)的个数: \(\boldsymbol{y}\)表示训练集对应标签,其大小为m行,m表示训练集的大小(size): \(\boldsymbol{y'}\)表示将测…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
本学习笔记是C++ primer plus(第六版)学习笔记.是C++学习笔记(1)的后续.复习C++基础知识的可以瞄瞄. 转载请注明出处http://www.cnblogs.com/zrtqsk/p/3878593.html,谢谢!如下. 第五章 1.for循环——for(initialization; test-expression; update-expression) body // test-expression 会被转换为bool,0为false,非零为true 2.表达式——表达式…
第十六章 整合数据库 16.1 JDBC入门 16.1.1 JDBC简介 1.JDBC是java联机数据库的标准规范.它定义了一组标准类与接口,标准API中的接口会有数据库厂商操作,称为JDBC驱动程序. 2.JDBC标准主要分为两个部分:JDBC应用程序开发者接口和JDBC驱动程序开发者接口.应用程序需要联机数据库,其相关API主要在java.sql和javax.sql两个包中. 3.应用程序使用JDBC联机数据库的通用语法: Connection conn = DriverManager.g…
这是六个人的故事,从不服输而又有强烈控制欲的monica,未经世事的千金大小姐rachel,正直又专情的ross,幽默风趣的chandle,古怪迷人的phoebe,花心天真的joey——六个好友之间的情路坎坷,事业成败和生活中的喜怒哀乐,无时无刻不牵动着彼此的心,而正是正平凡的点点滴滴,却成为最令人感动与留恋的东西. 人物:1.瑞秋•格林(RACHEL GREENE)由珍妮佛•安妮斯顿(Jennifer Aniston)扮演 瑞秋是莫妮卡的高中同学,在与牙医未婚夫的婚礼上脱逃至莫妮卡处. 2.罗…
AForge学习笔记(11):AForge.Imaging.Textures Clouds texture:具有云彩的纹理效果,示例如下:             CloudsTexture textureGenerator = new CloudsTexture();             float[,] texture = textureGenerator.Generate(320, 240);             pictureBox1.Image =... 2012-11-06…
目录: 线程间的通信示例 等待唤醒机制 等待唤醒机制的优化 线程间通信经典问题:多生产者多消费者问题 多生产多消费问题的解决 JDK1.5之后的新加锁方式 多生产多消费问题的新解决办法 sleep和wait的区别 停止线程的方式 守护线程 线程的其他知识点 一.线程间的通信示例 返目录回 多个线程在处理同一资源,任务却不同. 假设有一堆货物,有一辆车把这批货物往仓库里面运,另外一辆车把前一辆车运进仓库的货物往外面运.这里货物就是同一资源,但是两辆车的任务却不同,一个是往里运,一个是往外运. 下面…