优雅地关闭Spark Streaming: 当touch stop文件后,程序仍然会再执行一次,执行完成后退出.…
参考:https://spark.apache.org/docs/latest/sql-programming-guide.html#overview http://www.csdn.net/article/2015-04-03/2824407 Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrames and can als…
Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   通过转换来自于其他RDD,如map,filter等 2.创建操作(creation operation):RDD的创建由SparkContext来负责. 3.转换操作(transformation operation):将一个RDD通过一定操作转换为另一个RDD. 4.控制操作(control o…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后在解压好的maven客户端的文件夹内打开conf文件夹,修改里面的settings.xml文件 然后只需要修改这一行就可以了 ,把这一行替换成你自己本地的maven仓库的路径 最好是自己有一个完整点的maven仓库,然后把这个修改过的xml文件放到maven仓库下 到这里,你本地的maven客户端环…
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的spark搭建后是否真正可以使用了 1.今天就和大家写一个计算π的spark代码 下面我把已经写好了的代码放在下面,大家可以借以参考一下 package day02 import org.apache.spark.{SparkConf, SparkContext} import scala.math.r…
Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明:本文为博主原创文章,未经博主允许不得转载. Spark GraphX是一个分布式图处理框架,Spark GraphX基于Spark平台提供对图计算和图挖掘简洁易用的而丰富多彩的接口,极大的方便了大家对分布式图处理的需求.Spark GraphX由于底层是基于Spark来处理的,所以天然就是一个分布式…
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常见的转化操作和行动操作 基本RDD 行动操作 不同 RDD 的类型转换 持久化 Spark学习笔记3--RDD(下) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 向Spark传递函数 大部分 Spark 的转化操作和一部分行动操作,都需要传递函数后进行计算.如…
目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受众 起源和发展 Spark学习笔记0--简单了解和技术架构 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 什么是Spark Spark 是一个用来实现快速而通用的集群计算的平台. 扩展了广泛使用的MapReduce 计算模型 能够在内存中进行计算 一个统一的框架…
目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> RDD是什么? 弹性分布式数据集(Resilient Distributed Dataset,简称 RDD) Spark 的核心概念 一个不可变的分布式对象集合 每个 RDD 都被分为多个分区运行在集群的不同节点上 RDD…
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-core_2.10 的依赖 程序 找了一篇注释比较清楚的博客代码1,一次运行通过 import scala.Tuple2; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
上篇笔记记录了Local模式的一些内容,但是实际的应用中很少有使用Local模式的,只是为了我们方便学习和测试.真实的生产环境中,Standalone模式更加合适一点. 1.基础概述 Standalone不是单机模式,它是集群,但是是基于Spark独立调度器的集群,也就是说它是Spark特有的运行模式.有Client和Cluster两种模式,主要区别在于:Driver程序的运行节点.怎么理解呢?哪里提交任务哪里启动Driver,这个叫做Client模式:随便找台机器启动Driver,这个叫做Cl…
1.首先在Hbase中建立一张表,名字为student 参考 Hbase学习笔记——基本CRUD操作 一个cell的值,取决于Row,Column family,Column Qualifier和Timestamp Hbase表结构 2.往Hbase中写入数据,写入的时候,需要写family和column build.sbt libraryDependencies ++= Seq( "org.apache.spark" %% "spark-core" % "…
Spark Core 第1章 Spark 概述 Spark是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 Spark和Hadoop 的根本差异是多个作业之间的数据通信问题: Spark多个作业之间数据通信基于内存,而Hadoop基于磁盘 Spark是基于内存的,所以在实际的生产环境中,由于内存的限制,可能会由于内存资源不够导致Job 执行失败,此时MapReduce其实是一个更好的选择,所以Spark并不能完全替代MR Spark核心模块 Spark Core:提供Spark最基础与最核…
1.调度 分为FIFO和FAIR两种模式 创建调度池:sc.setLocalProperty("spark.scheduler.pool", "pool6") 终止调度池:sc.setLocalProperty("spark.scheduler.pool6", null) 配置调度池: 通过conf/fairscheduler.xml sparkConf.set("spark.scheduler.allocation.file"…
在运行Spark应用程序的时候,driver会提供一个webUI给出应用程序的运行信息,但是该webUI随着应用程序的完成而关闭端口,也就是 说,Spark应用程序运行完后,将无法查看应用程序的历史记录.Spark history server就是为了应对这种情况而产生的,通过配置,Spark应用程序在运行完应用程序之后,将应用程序的运行信息写入指定目录,而Spark history server可以将这些运行信息装载并以web的方式供用户浏览. 要使用history server,对于提交应用…
spark学习笔记01 1.课程目标 1.熟悉spark相关概念 2.搭建一个spark集群 3.编写简单spark应用程序 2.spark概述 spark是什么 是基于内存的分布式计算引擎,计算速度非常快,仅仅只是涉及到数据的计算,没有涉及到数据存储.可以对接外部的数据源(比如hdfs,这个时候就需要搭建一个hadoop集群) 为什么要学习spark spark运行速度快,由于中间数据结果可以不落地,直接保存在内存中,速度比mapreduce快很多 3.spark特性 速度快 spark比ma…
本文主要讲解如何在Linux环境下安装Spark集群,安装之前我们需要Linux已经安装了JDK和Scala,因为Spark集群依赖这些.下面就如何安装Spark进行讲解说明. 一.安装环境 操作系统:Red Hat Enterprise Linux 6 64 位(版本号6.6) JDK版本:1.8 Scala版本:2.12.2 Spark版本:2.2.0 172.18.3.135 主节点 172.18.3.136 从节点 172.18.3.137 从节点 之后的操作如果是用普通用户操作的话也必…
Spark 的运行模式有 Local(也称单节点模式),Standalone(集群模式),Spark on Yarn(运行在Yarn上),Mesos以及K8s等常用模式,本文介绍第一种模式. 1.Local模式 Local模式就是运行在一台计算机上的模式, 也称单节点模式 .Local 模式是最简单的一种Spark运行方式,它采用单节点多线程(CPU)方式运行, 通常就是用于在本机学习或者测试使用的,对新手比较友好.它可以通过以下的方式设置Master: local:所有的计算都运行在一个线程中…
1.Spark基于内存进行运算 2.Spark核心是SprintContext,是程序的入口 3.RDDs是提供抽象的数据集,通过RDDS可以方便对分布在各个节点的数据进行计算,而且忽略细节 4.RDDs与Stream API 5.RDDs采用类似延时加载,计算功能 6.RDDs的combineByKey函数是一个较核心的函数:如下 def combineByKey[C]( createCombiner: V => C, mergeValue: (C, V) => C, mergeCombin…
Spark 内核 第28课:Spark天堂之门解密 (点击进入博客)从 SparkContext 创建3大核心对象开始到注册给 Master 这个过程中的源码鉴赏 第29课:Master HA彻底解密 (点击进入博客)从 Master 如何基于 ZooKeeper 来做 HA 的源码鉴赏 第30课:Master的注册机制和状态管理解密 (点击进入博客)从 Master 的角度去分析它是如何接收 Worker, Driver, Application 的注册,以及它是如何管理 Driver 和 E…
Map-Reduce 我认为上图代表着MapReduce不仅仅包括Map和Reduce两个步骤这么简单,还有两个隐含步骤没有明确,全部步骤包括:切片.转换.聚合.叠加,按照实际的运算场景上述步骤可以简化. 具体的流程为: 原始数据 -) [切片] -> 数据对单元集合(列表) (k1,v1) 数据对单元集合 (k1,v1) -> [Map转换] -) 数据对单元集合 (k2,v2) 数据对单元集合 (k2,v2) -> [聚合(合并] -) 数据对单元集合(字典)(k2,[v2]) 数据…
package kaggle import org.apache.spark.SparkContext import org.apache.spark.SparkConf import org.apache.spark.sql.{SQLContext, SparkSession} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.classification.{LogisticR…
import org.apache.spark.ml.classification.RandomForestClassifier import org.apache.spark.ml.regression.RandomForestRegressor import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, NaiveBayes, SVMWithSGD} import org.apache.spark.ml…
1.建立TF-IDF模型 import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.linalg.{SparseVector => SV} import org.apache.spark.mllib.feature.HashingTF import org.apache.spark.mllib.feature.IDF /** * Created by common on 17-5-6. */ o…
Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术,训练过程计算量大并且较难扩展(幸运的是,MLlib会替我们考虑扩展性的问题),但是在很多情况下性能很好: 朴素贝叶斯模型简单.易训练,并且具有高效和并行的优点(实际中,模型训练只需要遍历所有数据集一次).当采用合适的特征工程,这些模型在很多应用中都能达到不错的性能.而且,朴素贝叶斯模型可以作为一个很…
使用MLlib库中的机器学习算法对垃圾邮件进行分类 分类的垃圾邮件的如图中分成4个文件夹,两个文件夹是训练集合,两个文件夹是测试集合 build.sbt文件 name := "spark-first" version := "1.0" scalaVersion := "2.11.8" libraryDependencies ++= Seq( "org.apache.spark" % "spark-core_2.11&…
许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用, 还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. Spark Streaming 使用离散化流( discretized stream)作为抽象表示, 叫作 DStream. DStream 是随时间推移而收到的数据的序列.在内部,每个时间区间收到…
本文主要是讲解Spark在Windows环境是如何搭建的 一.JDK的安装 1.1 下载JDK 首先需要安装JDK,并且将环境变量配置好,如果已经安装了的老司机可以忽略.JDK(全称是JavaTM Platform Standard Edition Development Kit)的安装,去Oracle官网下载,下载地址是Java SE Downloads . 上图中两个用红色标记的地方都是可以点击的,点击进去之后可以看到这个最新版本的一些更为详细的信息,如下图所示: 下载完之后,我们安装就可以…