传送门 显然不能直接写多重背包. 这题可以用二进制拆分/单调队列优化(感觉二进制好写). 所谓二进制优化,就是把1~c[i]拆分成20,21,...2t,c[i]−2t+1+1" role="presentation" style="position: relative;">20,21,...2t,c[i]−2t+1+120,21,...2t,c[i]−2t+1+1的组合. 这样物品总个数就变成了∑log(c[i])" role="…
1531: [POI2005]Bank notes Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 559  Solved: 310[Submit][Status][Discuss] Description Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值k求最少要用多少个硬币. Input 第一行一个数 n,…
1531: [POI2005]Bank notes Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 521  Solved: 285[Submit][Status][Discuss] Description Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值k求最少要用多少个硬币. Input 第一行一个数 n,…
Description Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值k求最少要用多少个硬币. Input 第一行一个数 n, 1 <= n <= 200. 接下来一行 n 个整数b1, b2,..., bn, 1 <= b1 < b2 < ... < b n <= 20 000, 第三行 n 个整数c1, c2,...,…
Description Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值k求最少要用多少个硬币. Input 第一行一个数 n, 1 <= n <= 200. 接下来一行 n 个整数b1, b2,..., bn, 1 <= b1 < b2 < ... < b n <= 20 000, 第三行 n 个整数c1, c2,...,…
多重背包... ---------------------------------------------------------------------------- #include<bits/stdc++.h>     #define rep(i, n) for(int i = 0; i < n; i++) #define clr(x, c) memset(x, c, sizeof(x))   using namespace std;   const int maxn = 209,…
题目描述 Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值k求最少要用多少个硬币. 输入 第一行一个数 n, 1 <= n <= 200. 接下来一行 n 个整数b1, b2,..., bn, 1 <= b1 < b2 < ... < b n <= 20 000, 第三行 n 个整数c1, c2,..., cn, 1 <…
/*问你能不能将给出的资源平分成两半,那么我们就以一半为背包,运行多重背包模版 但是注意了,由于个数过大,直接运行会超时,所以要用二进制拆分每种的个数*/ #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ],vr[],dp[]; ],v[]; int numw; void cf(int n,int ok) { int i,j,sum,e; e=sum=; whil…
传送门 概率dp简单题. 设f[i][j]表示前i轮j获胜的概率. 如果j,k能够刚好在第i轮相遇,找规律可以发现j,k满足: (j−1)>>(i−1)" role="presentation" style="position: relative;">(j−1)>>(i−1)(j−1)>>(i−1)^1==(k−1)>>(i−1)" role="presentation"…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1531 题解: 单调队列优化多重背包DP (弱弱的我今天总算是把这个坑给填了...) 令V[i]为第i种硬币的面值,C[i]为第i种硬币的数目. 定义DP[i][j]表示用了前i种硬币,凑出面值为j的最小硬币数. 先看看这个题用最裸的背包是如何转移的: DP[i][j]=min(dp[i-1][j-k*V[i]]]+k) 然后,我们令 a=⌊j÷V[i]⌋ (⌊ ⌋:向下取整),b=j%V[…