Spark之Yarn提交模式】的更多相关文章

一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examples-1.6.0-hadoop2.7.3.jar 1000 ./spark-submit --master yarn-client --class org.apache.examples.SparkPi ../lib/spark-examples-1.6.0-hadoop2.7.3.jar 100…
spark 2.1.1 系统中希望监控spark on yarn任务的执行进度,但是监控过程发现提交任务之后执行进度总是10%,直到执行成功或者失败,进度会突然变为100%,很神奇, 下面看spark on yarn任务提交过程: spark on yarn提交任务时会把mainClass修改为Client childMainClass = "org.apache.spark.deploy.yarn.Client" spark-submit过程详见:https://www.cnblog…
spark用yarn提交任务会报ERROR cluster.YarnClientSchedulerBackend: YARN application has exited unexpectedly with state UNDEFINED! Check the YARN application logs for more details.ERROR cluster.YarnClientSchedulerBackend: Diagnostics message: Shutdown hook cal…
Spark On Yarn 有两种运行模式: Yarn - Cluster Yarn - Client 他们的主要区别是: Cluster: Spark的Driver在App Master主进程内运行, 该进程由集群上的YARN管理, 客户端可以在启动App Master后退出. Client: Driver在提交作业的Client中运行, App Master仅用于从YARN请求资源. 这里以Client为例介绍: Yarn-Client运行模式  如上图: Yarn-Client模式中,D…
Spark 的官方从 Cluster Mode Overview 中,官方向我们介绍了 cluster 模式的部署方式. Spark 作为独立进程在集群上运行,他们通过 SparkContext 进行协调. SparkContext 可以通过多种方式来连接 Cluster Managers 资源调度器.我们先来看下这个集群模式的架构图 首先我要神明一点 standalone 也是集群模式的一种.只是说他不是通过第三方调度器比如 Yarn | Mesos  .我一直被这个名字误导,一直觉得是不是…
spark on yarn通过--deploy-mode cluster提交任务之后,应用已经在yarn上执行了,但是spark-submit提交进程还在,直到应用执行结束,提交进程才会退出,有时这会很不方便,并且不注意的话还会占用很多资源,比如提交spark streaming应用: 最近发现spark里有一个配置可以修改这种行为,提交任务的时候加长一个conf就可以 --conf spark.yarn.submit.waitAppCompletion=false org.apache.spa…
不多说,直接上干货! 请移步 Spark on YARN简介与运行wordcount(master.slave1和slave2)(博主推荐) Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master.slave1和slave2)(博主推荐)…
无论用YARN cluster和YARN client来跑,均会出现如下问题. [spark@master spark-1.6.1-bin-hadoop2.6]$ jps 2049 NameNode 2706 Jps 2372 ResourceManager 2660 Master 2203 SecondaryNameNode [spark@master spark-1.6.1-bin-hadoop2.6]$ $SPARK_HOME/bin/spark-submit \ > --master y…
spark2.1出来了,想玩玩就搭了个原生的apache集群,但在standalone模式下没有任何问题,基于apache hadoop 2.7.3使用spark on yarn一直报这个错.(Java 8) 报错日志如下: Warning: Master yarn-client is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead. // :: INFO spark.S…
Application ID is application_1481285758114_422243, trackingURL: http://***:4040Exception in thread "main" org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://mycluster-tj/user/engine_arch/data/mllib/sample_libsvm_d…
Spark版本:2.2.0_2.11 我们在项目中通过Spark SQL JDBC连接MySQL,在启动Driver/Executor执行的时候都碰到了这个问题.网上解决方案我们全部都试过了,奉上我们自己验证通过的方案: 1.在spark2-submit中指定好如下配置(我们使用的是mysql-connector-java-5.1.38.jar): --driver-class-path /local/to/path/mysql-connector-java-5.1.38.jar 2.在每台Da…
Spark On Yarn的优势 每个Spark executor作为一个YARN容器(container)运行.Spark可以使得多个Tasks在同一个容器(container)里面运行 1. Spark支持资源动态共享,运行于Yarn的框架都共享一个集中配置好的资源池 2. 可以很方便的利用Yarn的资源调度特性来做分类.隔离以及优先级控制负载,拥有更灵活的调度策略 3. Yarn可以自由地选择executor数量 4. Yarn是唯一支持Spark安全的集群管理器,使用Yarn,Spark…
1.spark 2.2内存占用计算公式 https://blog.csdn.net/lingbo229/article/details/80914283 2.spark on yarn内存分配** 本文转自:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 此文解决了Spark yarn-cluster模式运行时,内存不足的问题. Spark yarn-cluster模式运行时,…
之前记录Yarn:Hadoop2.0之YARN组件,这次使用Docker搭建Spark On  Yarn 一.各运行模式 1.单机模式 该模式被称为Local[N]模式,是用单机的多个线程来模拟Spark分布式计算,通常用来验证开发出来的应用程序逻辑上没有问题.其中N代表可以使用N个线程,每个线程拥有一个core.如果不指定N,则默认是1个线程(该线程拥有1个core) 指令实例: 1)spark-shell --master local 2)spark-shell --master local…
本文转自:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 此文解决了Spark yarn-cluster模式运行时,内存不足的问题. Spark yarn-cluster模式运行时,注意yarn.app.mapreduce.am.resource.mb的设置.默认为1G Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有…
Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有深入研究Spark的源代码,所以只能根据日志去看相关的源代码,从而了解“为什么会这样,为什么会那样”. 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. 当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一…
简介 spark的yarn运行模式根据Driver在集群中的位置分成两种: 1)yarn-client 客户端模式 2)yarn-cluster 集群模式 yarn模式和standalone模式不同,standalone模式需要启动spark独立集群,这样SparkContext才能与Master进行交互通信.而yarn模式的资源管理全部托管给的ResourceManager了,所以它不需要启动spark独立集群,那么也就意味着你无法访问http://master:8080这个页面了. yarn…
引导: 该篇章主要讲解执行spark-submit.sh提交到将任务提交给Yarn阶段代码分析. spark-submit的入口函数 一般提交一个spark作业的方式采用spark-submit来提交 # Run on a Spark standalone cluster ./bin/spark-submit \ --class org.apache.spark.examples.SparkPi \ --master spark://207.184.161.138:7077 \ --execut…
本文主要参考: a. https://www.cnblogs.com/yy3b2007com/p/10934090.html 0. 说明 a. 关于spark源码会不定期的更新与补充 b. 对于spark源码的历史博文,也会不定期修改.增加.优化 c. spark源码对应的spark版本为2.4.1 1. 引导 该篇主要讲解执行spark-submit.sh脚本时将任务提交给Yarn阶段代码分析.其中spark的代码版本为2.4.1. (1) spark-submit的入口函数 一般提交一个sp…
一.前述 Spark可以和Yarn整合,将Application提交到Yarn上运行,和StandAlone提交模式一样,Yarn也有两种提交任务的方式. 二.具体      1.yarn-client提交任务方式 配置          在client节点配置中spark-env.sh添加Hadoop_HOME的配置目录即可提交yarn 任务,具体步骤如下:            注意client只需要有Spark的安装包即可提交任务,不需要其他配置(比如slaves)!!! 提交命令   .…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1..0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala- (必须写) export HADOOP_H…
spark可以运行在standalone,yarn,mesos等多种模式下,当前我们用的最普遍的是yarn模式,在yarn模式下又分为client和cluster.本文接下来将分析yarn cluster下任务提交的过程.也就是回答,在yarn cluster模式下,任务是怎么提交的问题.在yarn cluster模式下,spark任务提交涉及四个角色(client, application, driver以及executor)之间的交互.接下来,将详细分析这四个角色在任务提交过程中都做了那些事…
一.spark的三种提交模式 1.第一种,Spark内核架构,即standalone模式,基于Spark自己的Master-Worker集群. 2.第二种,基于YARN的yarn-cluster模式. 3.第三种,基于YARN的yarn-client模式. 如果,你要切换到第二种和第三种模式,在提交spark应用程序的spark-submit脚本加上--master参数,设置为yarn-cluster,或yarn-client,即可.如果没设置,那么,就是standalone模式. 一.基于YA…
1.spark在yarn模式下提交作业需要启动hdfs集群和yarn,具体操作参照:hadoop 完全分布式集群搭建 2.spark需要配置yarn和hadoop的参数目录 将spark/conf/目录下的spark-env.sh.template文件复制一份,加入配置: YARN_CONF_DIR=/opt/hadoop/hadoop-2.8.3/etc/hadoop HADOOP_CONF_DIR=/opt/hadoop/hadoop-2.8.3/etc/hadoop 3.将spark整个目…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala-2.10.5 (必须写) export H…
Spark剖析-宽依赖与窄依赖.基于yarn的两种提交模式.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 2.1 Standalne-client 2.2 Standalone-cluster 三.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 Spark的三种提交模式: Spark内核架构中,其实就是第一种模式,standalone模式,基于Spark自己的Master-Worker集群. 第二种,基…
Spark基本工作流程及YARN cluster模式原理 转载请注明出处:http://www.cnblogs.com/BYRans/ Spark基本工作流程 相关术语解释 Spark应用程序相关的几个术语: Worker:集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点.在Spark on Yarn模式中指的就是NodeManager节点: Executor:Application运行在Worker 节点上的一个进程,该进程负责运行Task,并且…
当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit --master yarn-cluster   #使用集群调度模式(一般使用这个参数) --num-executors  132      # executor 数量 --executor-cores  2        #设置单个executor能并发执行task数,根据job设置,推荐值2-16 (…
本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发)   问题导读 1.Spark在YARN中有几种模式? 2.Yarn Cluster模式,Driver程序在YARN中运行,应用的运行结果在什么地方可以查看? 3.由client向ResourceManager提交请求,并上传jar到HDFS上包含哪些步骤? 4.传递给app的参数应该通过什么来指定? 5.什么模式下最后将结果输…
转载自:http://lxw1234.com/archives/2015/07/416.htm 关键字:Spark On Yarn.Spark Yarn Cluster.Spark Yarn Client Spark On Yarn模式配置非常简单,只需要下载编译好的Spark安装包,在一台带有Hadoop Yarn客户端的机器上解压,简单配置之后即可使用. 要把Spark应用程序提交到Yarn运行,首先需要配置HADOOP_CONF_DIR或者YARN_CONF_DIR,让Spark知道Yar…