按理说Po姐姐三月份来讲课的时候我就应该学了 但是当时觉得比较难加上自己比较懒,所以就QAQ了 现在不得不重新弄一遍了 首先说多项式求ln 设G(x)=lnF(x) 我们两边求导可以得到G'(x)=F‘(x)/F(x) 则G(x)就是F’(x)/F(x)的积分 我们知道多项式求导和积分是O(n)的,多项式求逆是O(nlogn)的 所以总时间复杂度O(nlogn) 多项式求ln一般解决的问题是这样的 设多项式f表示一些奇怪的东西,由一些奇怪的东西有序组成的方案为 f^1+f^2+f^3…… 化简之…
题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/details/80550935 https://www.cnblogs.com/guo-xiang/p/6662881.html 大概就是:\( f(x) = \sum\limits_{i=0}^{n}\frac{ f^{(i)}(x_0) }{i!}(x-x_0)^i +R_n\) 麦克劳林展开就…
题目问$A^B$的所有因数和. 根据唯一分解定理将A进行因式分解可得:A = p1^a1 * p2^a2 * p3^a3 * pn^an.A^B=p1^(a1*B)*p2^(a2*B)*...*pn^(an*B);A^B的所有约数之和sum=[1+p1+p1^2+...+p1^(a1*B)]*[1+p2+p2^2+...+p2^(a2*B)]*[1+pn+pn^2+...+pn^(an*B)] 知道这个,问题就变成求出A的所有质因数pi以及个数n,然后$\prod(1+p_i+p_i^2+\cd…
Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 4246    Accepted Submission(s): 1332 Problem Description An Arc of Dream is a curve defined by following function: wherea0 = A0ai = a…
矩阵快速幂的题要多做 由题可得 g[n]=A*g[n-1]+B 所以构造矩阵  { g[n] }    =  {A   B}  * { g[n-1]} {   1   }         {0   1}     {    1    } 然后矩阵快速幂就好 矩阵快速幂的题要多做,多构造矩阵 注:其实这个题可以直接等比数列求求和,单数矩阵快速幂对于这类题更具有普遍性 #include <cstdio> #include <iostream> #include <ctime>…
题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只能使用-1.0.1.使得矩阵的每行每列的和都不相同,输出方案,不行的话输出No. 解题思路:求r的话用矩阵快速幂求,每次模掉m, { {1, 1, 0}, {1, 0, 0}, {1, 1, 1} } * { f[i], f[i -1], s[i] } = { f[i + 1], f[i], s[i…
umm首先矩阵快速幂的板子就不港了比较简单的还是?就结合二进制地理解一下就好了,代码可以翻蒟蒻の考前续命这里面放了我记得? 主要是说下应用趴? 目前我会的似乎就是个矩阵加速?简单来说就是个给一个递推式(以板子为例说下?那么递推式就是f[x]=f[x-3]+f[x-1])给一个k要快速地求出f(k) umm其实这个的话就是构造一个矩阵,然后套个矩阵快速幂就好了鸭 矩乘当然是板子的了,主要问题在于构造矩阵,这里港下我肝了一个下午的理解qwq 定义 首先我们要理解矩阵?它的作用在哪儿? umm这个点的…
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases.   题意是输入一个N,求N被分成1个数的结果+被分成2个数的结果+...+被分成N个数的结果,N很大   1.隔板原…
题目链接:http://poj.org/problem?id=3070 . 就是斐波那契的另一种表示方法是矩阵的幂: 所以是矩阵快速幂:矩阵快速幂学习 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include<math.h> using namespace std; #define N 10 struct node { int a[…
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算法原理 . 看到这个算法之后,就知道这个题是求cd≡m(mod n),要求m,就要先求d,而d则是e的模反元素. 如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1.这时,b就叫做a的模反元素. 由模反元素可知,ed≡1(mod Phi[n])(p…