本文主要参考两篇文献: 1.<深度学习theano/tensorflow多显卡多人使用问题集> 2.基于双向LSTM和迁移学习的seq2seq核心实体识别 运行机器学习算法时,很多人一开始都会有意无意将数据集默认直接装进显卡显存中,如果处理大型数据集(例如图片尺寸很大)或是网络很深且隐藏层很宽,也可能造成显存不足. 这个情况随着工作的深入会经常碰到,解决方法其实很多人知道,就是分块装入.以keras为例,默认情况下用fit方法载数据,就是全部载入.换用fit_generator方法就会以自己手…
在跑TensorFlow.pytorch之类的需要CUDA的程序时,强行Kill掉进程后发现显存仍然占用,这时候可以使用如下命令查看到top或者ps中看不到的进程,之后再kill掉: fuser -v /dev/nvidia* 批量清理显卡中残留进程: sudo fuser -v /dev/nvidia* |awk '{for(i=1;i<=NF;i++)print "kill -9 " $i;}' | sudo sh…
刚入门深度学习时,没有显存的概念,后来在实验中才渐渐建立了这个意识. 下面这篇文章很好的对GPU和显存总结了一番,于是我转载了过来. 作者:陈云 链接:https://zhuanlan.zhihu.com/p/31558973 来源:知乎 深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为"资源" 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡 并纠正几个误区: 显存和GPU等价,使用GPU主要看显存的使用? Batch Size 越大,程序越快…
keras在使用GPU的时候有个特点,就是默认全部占满显存. 若单核GPU也无所谓,若是服务器GPU较多,性能较好,全部占满就太浪费了. 于是乎有以下三种情况: - 1.指定GPU - 2.使用固定显存的GPU - 3.指定GPU + 固定显存 一.固定显存的GPU 本节来源于:深度学习theano/tensorflow多显卡多人使用问题集(参见:Limit the resource usage for tensorflow backend · Issue #1538 · fchollet/ke…
Keras 是一个高层神经网络API,Keras是由纯Python编写而成并基于TensorFlow,Theano以及CNTK后端.Keras为支持快速实验而生,能够将我们的idea迅速转换为结果.好了不吹了,下面继续学习Keras的一些用法,其中这篇博客包括了Keras如何指定显卡且限制显存用量,还有一些常见函数的用法及其问题,最后是使用Keras进行的练习. Keras如何指定显卡且限制显存用量 Keras在使用GPU的时候有个特点,就是默认全部占满显存.若单核GPU也无所谓,若是服务器GP…
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0. . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequent…
原文链接:https://oldpan.me/archives/how-to-calculate-gpu-memory 前言 亲,显存炸了,你的显卡快冒烟了! torch.FatalError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524590031827/work/aten/src/THC/generic/THCStorage.cu:58 想必这是所有炼丹师们最不想看到的错误,没有之一.…
MegEngine亚线性显存优化 MegEngine经过工程扩展和优化,发展出一套行之有效的加强版亚线性显存优化技术,既可在计算存储资源受限的条件下,轻松训练更深的模型,又可使用更大batch size,进一步提升模型性能,稳定batchwise算子.使用MegEngine训练ResNet18/ResNet50,显存占用分别最高降低23%/40%:在更大的Bert模型上,降幅更是高达75%,而额外的计算开销几乎不变. 基于梯度检查点的亚线性显存优化方法[1]由于较高的计算/显存性价比受到关注.M…
Antz系统更新地址: https://www.cnblogs.com/LexMoon/category/1262287.html Linux内核源码分析地址:https://www.cnblogs.com/LexMoon/category/1267413.html 目前已经完成了MBR的雏形,虽然有些简陋,比如我们的屏幕显示还是使用的BIOS中断,而在BIOS中断向量表只有在实模式下存在, 我们要进入保护模式之后就无法使用了.此次我们要完成直接操作显存来进行屏幕显示. 0.  关于显存 如果要…
前言 今早我想用多块GPU测试模型,于是就用了PyTorch里的torch.nn.parallel.DistributedDataParallel来支持用多块GPU的同时使用(下面简称其为Dist). 程序运行时,由于程序中其他部分的代码(与Dist无关的代码)出现了错误,导致程序退出.这次使用Dist时没有考虑和处理这种程序崩溃的情况,因此在程序退出前没有用Dist关闭生成的所有进程,最终导致本次进程运行后GPU显存未释放(经观察,发现是由于没有用Dist关闭所有进程,导致程序运行后还有一部分…
技术背景 笔者在执行一个Jax的任务中,又发现了一个奇怪的问题,就是明明只分配了很小的矩阵空间,但是在多次的任务执行之后,显存突然就爆了.而且此时已经按照Jax的官方说明配置了XLA_PYTHON_CLIENT_PREALLOCATE这个参数为false,也就是不进行显存的预分配(默认会分配90%的显存空间以供使用).然后在网上找到了一些类似的问题,比如参考链接中的1.2.3.4,都是在一些操作后发现未释放显存,这里提供一个实例问题和处理的思路,如果有更好的方案欢迎大家在评论区留言. 问题复现…
引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottleneck features进行微调(三)>一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning. 看到github上有一份InceptionV3的fine-tuning并且可以实现. 我看到的keras微调的方式分为以下两种: fin…
引自:http://blog.csdn.net/sinat_26917383/article/details/72861152 中文文档:http://keras-cn.readthedocs.io/en/latest/  官方文档:https://keras.io/  文档主要是以keras2.0. 训练.训练主要就”练“嘛,所以堆几个案例就知道怎么做了. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Ap…
Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性,之后更是作为Tensorflow的官方指定第三方支持开源框架.但两者在使用GPU时都有一个特点,就是默认为全占满模式.在训练的情况下,特别是分步训练时会导致显存溢出,导致程序崩溃.可以使用自适应配置来调整显存的使用情况. 一.Tensorflow1.指定显卡代码中加入 import osos.environ["CUDA_VISIBLE_…
引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/en/latest/  官方文档:https://keras.io/  文档主要是以keras2.0. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Seq…
前言 是的,除了水报错文,我也来写点其他的.本文主要介绍Keras中以下三个函数的用法: fit()fit_generator()train_on_batch()当然,与上述三个函数相似的evaluate.predict.test_on_batch.predict_on_batch.evaluate_generator和predict_generator等就不详细说了,举一反三嘛. 环境 本文的代码是在以下环境下进行测试的: Windows 10Python 3.6TensorFlow 2.0…
背景 作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 使用GPU训练时,一次训练任务无论是模型参数还是中间结果都需要占用大量显存.为了避免每次训练重新开辟显存带来计算之外的开销,一般框架的做法是在真正的训练任务开始前,将每个节点的输入和输出,以及模型参数的shape计算出来并全局开辟一次,例如Caffe就是这种做法.随着深度学习模型的发展和迭代,不仅模型训练的数据shape可能发生变化,就连模型本身在训练过程中也可能发生变化,那么…
本文记录了在JOS(或在任意OS)上实现图形界面的方法与一些图形库的实现. 本文中支持的新特性: 支持基本图形显示 支持中英文显示(中英文点阵字库) 相关:VBE VESA MMIO 点阵字库 Github : https://github.com/He11oLiu/JOS About VESA Video Electronics Standards Association(视频电子标准协会,简称"VESA")是制定计算机和小型工作站视频设备标准的国际组织,1989年由NEC及其他8家…
项目简介 本项目基于Altera公司的Cyclone IV型芯片,利用NIOS II软核,2-port RAM与时序控制模块,实现64*48分辨率的显存(再大的显存板载资源m9k不够用) 实现效果如下: VGA时序控制模块 VGA时序简介 网络上针对VGA时序的讲解已经非常多了,简单的理解,VGA主要有H_sync和V_sync这两个坐标同步信号,与RGB这三个色彩信号.当H_sync与V_sync达到特定的值的时候,对应一个特别的坐标(x,y)上的颜色为RGB.VGA上的RGB信号是模拟信号,…
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像…
下面通过实验来探索Pytorch分配显存的方式. 实验 显存到主存 我使用VSCode的jupyter来进行实验,首先只导入pytorch,代码如下: import torch 打开任务管理器查看主存与显存情况.情况分别如下: 在显存中创建1GB的张量,赋值给a,代码如下: a = torch.zeros([256,1024,1024],device= 'cpu') 查看主存与显存情况: 可以看到主存与显存都变大了,而且显存不止变大了1G,多出来的内存是pytorch运行所需的一些配置变量,我们…
很多用户反馈说终止程序之后,显存依然被占用,这里我们提供了两种解决方案,帮助用户解决这个问题. nvidia-smi查看 我们可以先用如下命令 nvidia-smi 查看一下当前GPU进程情况. _ GPU:GPU 编号: Name:GPU 型号: Persistence-M:持续模式的状态.持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这里显示的是off的状态: Fan:风扇转速,从0到100%之间变动: Temp:温度,单位是摄氏度: Perf:性能状态,从P0到P12,P…
上一篇随笔整理了一下逐行扫描型Memory LCD的显存管理与emWin移植,这篇就整理一下分页型Memory LCD显存管理与emWin移植. //此处以SSD1306作为实例 //OLED的显存//存放格式如下.//[0]0 1 2 3 ... 127    //[1]0 1 2 3 ... 127    //[2]0 1 2 3 ... 127    //[3]0 1 2 3 ... 127    //[4]0 1 2 3 ... 127    //[5]0 1 2 3 ... 127  …
因为Memory LCD 的特性,不能设置像素坐标,只能用缓存整体刷新. 所以对于Memory LCD来说,emWin移植仅与打点函数有关,这里用Sharp Memory LCD(ls013b7dh03)作为实例. //LCD的显存,逐行扫描//存放格式如下.//[0]0 1 2 3 ... 16    //[1]0 1 2 3 ... 16    //[2]0 1 2 3 ... 16    //[3]0 1 2 3 ... 16    //[4]0 1 2 3 ... 16    //[5]…
[精]从CPU架构和技术的演变看GPU未来发展 http://www.pcpop.com/doc/0/521/521832_all.shtml 显存与纹理内存详解 http://blog.csdn.net/pizi0475/article/details/8739557 GPU 与CPU的作用协调,工作流程.GPU整合到CPU得好处 http://blog.csdn.net/maopig/article/details/6803141 双剑合璧:CPU+GPU异构计算完全解析 http://bj…
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440/*** OpenGL8-直接分配显存-极速绘制(Opengl1.5版本才有)例子中展示了如何直接 分配显存,使用了glBindBuffer(GL_ARRAY_BUFFER_ARB, _vertexBufer)这个例 子中同样适用该函数分配显卡缓冲区,只是参数有所变化,传递的参数如下所示 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER_…
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440 /** * 这个例子介绍如何使用显卡内存进行绘制 下载地址 :http://files.cnblogs.com/zhanglitong/Tutorial8-%E7%9B%B4%E6%8E%A5%E5%88%86%E9%85%8D%E6%98%BE%E5%AD%98.rar 这里使用显卡缓冲区绘制,而不是使用内存缓冲区进行绘制 可以减少数据从内存传递到显存的过程…
在电脑上安装Nvidia显卡驱动,平时也会通过Nvidia控制面板来查看显示显存位宽及宽带.显示显存容量和显示显存芯片信息等等,那么该如何查看Nvidia显存大小以及Nvidia硬件相关信息呢? 1.安装上独立显卡驱动之后,在桌面空白空鼠标右键点击,nvidia控制面板,如图: 2.左下角系统属性即可查看机器的独立显卡显存,如图: 3.之后即可看到显卡显存位宽等情况. 如果用户想要查看到Nvidia显卡显存相关硬件信息的话,可以按照教程的简单步骤进行查看.…
全局存储器,即普通的显存,整个网格中的随意线程都能读写全局存储器的任何位置. 存取延时为400-600 clock cycles  很easy成为性能瓶颈. 訪问显存时,读取和存储必须对齐,宽度为4Byte.假设没有正确的对齐,读写将被编译器拆分为多次操作,减少訪存性能. 多个warp的读写操作假设可以满足合并訪问,则多次訪存操作会被合并成一次完毕.合并訪问的条件,1.0和1.1的设备要求较严格,1.2及更高能力的设备上放宽了合并訪问的条件. 1.2及其更高能力的设备支持对8 bit.16 bi…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter 1 终端执行程序时设置使…