1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构. 2 推导 拉普拉斯特征映射通过构建邻接矩阵为 $W$ (邻接矩阵定义见这里) 的图来重构数据流形的局部结构特征.其主要思想是,如果两个数据 实例 $i$…
下面是实验室大牛师兄自己写的一段总结,主要内容是Laplacian Eigenmap中的核心推导过程. 有空还是多点向这位师兄请教,每次都会捡到不少金子. Reference : <Laplacian Eigenmaps for Dimensionality Reduction and Data Representation>,2003,MIT…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法…
降维(二)----Laplacian Eigenmaps 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------------- 前一篇文章中介绍了主成分分析.PCA的降维原则是最小化投影损失,或者是最大化保留投影后数据的方差.在谈到其缺点的时候,我们说这一目标并不一定有助于数据的分类,换句话说,原本在高维空间中属于两类的样本,降维后可能反而不可分了.这时一种经典的降维方法是LDA,其原理是使降维后的数据…
前面两篇介绍了SOM的基本概念和算法,第一部分,第二部分,本篇具体展开一下应用中的一些trick设定. SOM设计细节 输出层设计 输出层神经元数量设定和训练集样本的类别数相关,但是实际中我们往往不能清除地知道有多少类.如果神经元节点数少于类别数,则不足以区分全部模式,训练的结果势必将相近的模式类合并为一类:相反,如果神经元节点数多于类别数,则有可能分的过细,或者是出现"死节点",即在训练过程中,某个节点从未获胜过且远离其他获胜节点,因此它们的权值从未得到过更新. 不过一般来说,如果对…
1981年芬兰 Helsink 大学的 T·Kohonen 教授提出一种自组织特征映射网 (Self-Organizing Feature Map , SOFM ), 又称 Kohonen 网 . Kohonen 认为 ,一个神经网络接受外界输入模式时, 将会分为不同的对应区域, 各区域对输入模式具有不同的响应特征,而且这个过程是自动完成的. 自组织特征映射正是根据这一看法提出来的 ,其特点与人脑的自组织特性相类似. 一.SOFM网生物学基础 生物学研究表明,在人脑感觉通道上,神经元的组织原理是…
一.拉普拉斯融合基本步骤 1. 两幅图像L,R,以及二值掩模mask,给定金字塔层数level. 2. 分别根据L,R构建其对应的拉普拉斯残差金字塔(层数为level),并保留高斯金字塔下采样最顶端的图像(尺寸最小的图像,第level+1层): 拉普拉斯残差金字塔构建方法如下,以L图为例: (1) 对L进行高斯下采样得到downL,OpenCV中pyrDown()函数可以实现此功能.然后再对downL进行高斯上采样得到upL,OpenCV中pyrUp()函数可以实现此功能. (2) 计算原图L与…
原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = D-A,D其中为图的度矩阵,A为图的邻接矩阵.例如,给定一个简单的图,如下(例子来自wiki百科):     把此“图”转换为邻接矩阵的形式,记为A:     把W的每一列元素加起来得到N个数,然后把它们放在对角线上(其它地方都是零),组成一个N×N的对角矩阵,记为度矩阵D,如下图所示.其实度矩阵(…
概念 零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是  $0$ .这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为 $0$ ). 拉普拉斯平滑(Laplacian smoothing) 是为了解决零概率的问题. 法国数学家 拉普拉斯 最早提出用 加 $1$  的方法,估计没有出现过的现象的概率. 理论假设:假定训练样本很大时,每个分量 $x$ 的计数加  $1$  造成的估计概率变化可以忽略不计,但…
感觉是有很久没有回到博客园,发现自己辛苦写的博客都被别人不加转载的复制粘贴过去真的心塞,不过乐观如我,说明做了一点点东西,不至于太蠢,能帮人最好.回校做毕设,专心研究多流形学习方法,生出了考研的决心.话不多说,看论文带大家走入Joshua B. Tenenbaum的Isomap的世界! 大数据时代的人总是那么的浮躁不安,高维并不可怕,事实的本质总是简单而单调的,因此流形学习理念中直接假设高维的数据都存在低维的本征结构.自“流形”这个概念被提出以来,许多人都在寻找一个高维数据中最现实的问题——降维…
这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存.以这种方式,可以得到一个能反映流形的几何结构的解. 步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3-n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关.如果xi,xj相距较近,我们就连接vi,vj.也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数. 步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为…
转自:https://www.zhihu.com/question/35602879 1.问题: SVM中,对于线性不可分的情况下,我们利用升维,把低维度映射到到维度让数据变得“更可能线性可分”,为了避免维度爆炸,我们巧妙的运用了核函数,避免了在高维度空间的计算,而只需要在低维度空间进行计算. 对于核函数,有: 多项式核: 高斯核: 对于多项式核,我们把低维度映射到高维度,我们可以从公式中很容易的理解,但是对于高斯核,“把维度映射到无穷多维”,是如何理解的?如何看出是“无穷多维”的? 2.回答…
It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using…
PlayGround.http://playground.tensorflow.org .教学目的简单神经网络在线演示.实验图形化平台.可视化神经网络训练过程.在浏览器训练神经网络.界面,数据(DATA).特征(FEATURES).神经网络隐藏层(HIDDEN LAYERS).层中连接线.输出(OUTPUT). 数据.二维平面,蓝色正值,黄色负值.数据形态,圆形.异或.高斯.螺旋.数据配置,调整噪声(noise)大小,改变训练.测试数据比例(ratio),调整入输入每批(batch)数据数量1-…
PCA的降维原则是最小化投影损失,或者是最大化保留投影后数据的方差.LDA降维需要知道降维前数据分别属于哪一类,而且还要知道数据完整的高维信息.拉普拉斯特征映射 (Laplacian Eigenmaps,LE)看问题的角度和LLE十分相似.它们都用图的角度去构建数据之间的关系.图中的每个顶点代表一个数据,每一条边权重代表数据之间的相似程度,越相似则权值越大.并且它们还都假设数据具有局部结构性质.LE假设每一点只与它距离最近的一些点相似,再远一些的数据相似程度为0,降维后相近的点尽可能保持相近.而…
机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达, y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的.使用降维的原因: 压缩数据以减少存储量. 去除噪声的影响 从数据中提取特征以便于进行分类 将数据投影到低维可视空间,以便于看清数据的分布 变量(特征)数量相对数据条数有可能过大,从而不符合某些模型的需求.打…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
原文地址:https://blog.csdn.net/dllian/article/details/7472916 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化.它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律.流形学习方法是模式识别中的基本方法,分为线性流形学习算法和非线性流形学习算法,线性方法就是传统的方法如主成分分析(PCA)和线性判别分析(LDA)…
很多原理性的东西需要有基础性的理解,还是篇幅过少,所以讲解的不是特别的清晰. 原文链接:http://blog.sciencenet.cn/blog-722391-583413.html 流形(manifold)的概念最早是在1854年由 Riemann 提出的(德文Mannigfaltigkeit),现代使用的流形定义则是由 Hermann Weyl 在1913年给出的. 流形(Manifold),一般可以认为是局部具有欧氏空间性质的拓扑空间.而实际上欧氏空间就是流形最简单的实例.像地球表面这…
转自:http://blog.csdn.net/u012162613/article/details/45920827 1.流形学习的概念 流形学习方法(Manifold Learning),简称流形学习,自2000年在著名的科学杂志<Science>被首次提出以来,已成为信息科学领域的研究热点.在理论和应用上,流形学习方法都具有重要的研究意义. 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以…
讲授LDA基本思想,寻找最佳投影矩阵,PCA与LDA的比较,LDA的实际应用 大纲: 非线性降维算法流形的概念流形学习的概念局部线性嵌入拉普拉斯特征映射局部保持投影等距映射实验环节 非线性降维算法: 上节介绍了经典的PCA算法,它虽然在很多问题上取得了成功,但是它有它的局限性,因为在现实世界中我们要处理的很多数据它是非线性的,而PCA本身是一个线性化的算法,用线性算法处理非线性问题是不太合适的,所以我们要有非线性的降维技术. 通过一个非线性的函数将x映射到另一个空间中去,得到一个向量y,x的维度…
From: 2.3.5 Clustering - Spectral clustering From: 漫谈 Clustering (4): Spectral Clustering From: 漫谈 Clustering (番外篇): Dimensionality Reduction 传统方式的弊端 事实上,Laplacian Eigenmap (拉普拉斯特征映射) 假设数据分布在一个嵌套在高维空间中的低维流形上, Laplacian Matrix  则是流形的 Laplace Beltrami…
论文题目:<LINE: Large-scale Information Network Embedding>发表时间:  KDD 2015论文作者:  Jian Tang, Meng Qu , Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei论文地址:  Download 前言 大规模信息网络 (large-scale information Network) 无论在存取性,使用性上比起普通的信息处理方式更加复杂,更加多变,例如航空公司网络,出版物网…
今天是2015年的最后一天,决定尽量乘着这三天休息把毕设主题的博客给更完,今天写smmc的算法,接下来三天会对前面的三个算法kmeans.SC以及smmc应用在今年的研究生建模提供的数据中进行matlab实现从而进行效果对比,还有一件高兴的事情是进入沪江三年多了,第一次被cctalk里面的老师抱上麦进行真正意义上的英文对话,搞得都想转行去魔都发展英文了.哈哈,言归正传,进入学术世界吧- 注意:这里的文字很多摘抄于发表在IEEE上的英文论文<Spectral Clustering on Multi…
在局部线性嵌入(LLE)原理总结中,我们对流形学习中的局部线性嵌入(LLE)算法做了原理总结.这里我们就对scikit-learn中流形学习的一些算法做一个介绍,并着重对其中LLE算法的使用方法做一个实践上的总结. 1. scikit-learn流形学习库概述 在scikit-learn中,流形学习库在sklearn.manifold包中.里面实现的流形学习算法有: 1)多维尺度变换MDS算法:这个对应的类是MDS.MDS算法希望在降维时在高维里样本之间的欧式距离关系在低维可以得到保留.由于降维…
讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用. 大纲: 聚类问题简介聚类算法的分类层次聚类算法的基本思想簇之间距离的定义k均值算法的基本思想k均值算法的流程k均值算法的实现细节问题实验EM算法简介Jensen不等式EM算法的原理推导收敛性证明 聚类算法是无监督学习的典型代表,前边讲过的数据降维算法是无监督学习的另外一种典型代表. 聚类问题简介: 聚类算法的概念第四讲机器学习的基本概念里边已经…
讲授机器学习的基本概念.发展历史与典型应用 大纲: 人工智能简介机器学习简介为什么需要机器学习机器学习的发展历史机器学习的典型应用人工智能主要的公司本课程讲授的算法 机器学习并不是人工智能一上来就采用的方法,而是发展到一定阶段之后的产物 这门课需要的参考书:(前面两本有点老,没有讲深度学习的东西,但神经网络讲的还是比较详细的) 人工智能简介: 定义:用计算机来实现人的智能. 1956年人工智能达特茅斯会议,2016年(AlphaG)人工智能大规模进入公众的视野. 图灵奖最多的方向:CPU的设计(…
讲授数据降维原理,PCA的核心思想,计算投影矩阵,投影算法的完整流程,非线性降维技术,流行学习的概念,局部线性嵌入,拉普拉斯特征映射,局部保持投影,等距映射,实际应用 大纲: 数据降维问题PCA的思想最佳投影矩阵向量降维向量重构实验环节实际应用 数据降维问题: 为什么需要数据降维?①高维数据不易处理,机器学习和模式识别中高维数据不太好处理,如人脸图像32*32,1024维向量,维度太高效率低.影响精度.②不能可视化,1024维是无法可视化的.③维数灾难问题,开始增加维度算法预测精度会提升,但再继…
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最大方差理论 PCA最小平方误差理论 在机器学习中, 数据通常需要被表示成向量形式以输入模型进行训练. 但是在对向维向量进行处理和分析时, 会极大地消耗系统资源, 甚至产生维度灾难. 因此, 对特征向量进行降维, 即用一个低维度的向量表示原始高维度的特征就显得尤为重要. PCA(Principal C…