fastext是什么? Facebook AI Research Lab 发布的一个用于快速进行文本分类和单词表示的库.优点是很快,可以进行分钟级训练,这意味着你可以在几分钟时间内就训练好一个分类模型. 本文主要内容? 使用fasttext训练一个效果不错的新闻文本分类器/模型. 使用到的技术和环境? 1. python 3.7.fasttext 0.9.1(截至2020/3/29最新版本) Windows 10 (实验过程中使用的环境) 2. 1核2G 1Mbps 腾讯云服务器 Ubuntu…
向@yangliuy大牛学习NLP,这篇博客是数据挖掘-基于贝叶斯算法及KNN算法的newsgroup18828文本分类器的JAVA实现(上)的Python实现.入门为主,没有太多自己的东西. 1. 数据集 Newsgroup新闻文档集,含有20000篇左右的Usenet文档,平均分配在20个新闻组,即有20个文件夹.现在用的Newsgroup18828新闻文档集是经过处理的,即每篇文档只属于一个新闻组. 2. 预处理,对每篇文档进行文本处理,为后续构造字典.提取特征词做准备 # -*- cod…
上一篇博客用词袋模型,包括词频矩阵.Tf-Idf矩阵.LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题. 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用word2vec.glove和fasttext词向量进行文本表示,训练随机森林分类器. 一.训练word2vec和fasttext词向量 Kaggle情感分析题给出了三个数据集,一个是带标签的训练集,共25000条评论,一个是测试集,无标签的,用来做预测并提交结果,这两个数据集是上一篇文章里我们用过…
2019-09-09 16:33:11 问题描述:fastText是如何进行文本分类的. 问题求解: fastText是一种Facebook AI Research在16年开源的一个文本分类器. 其特点就是fast.相对于其它文本分类模型,如SVM,Logistic Regression和neural network等模型,fastText在保持分类效果的同时,大大缩短了训练时间.fastText专注于文本分类,在许多标准问题上的分类效果非常好. 训练fastText trainDataFile…
一.简介 此文是对利用jieba,word2vec,LR进行搜狐新闻文本分类的准确性的提升,数据集和分词过程一样,这里就不在叙述,读者可参考前面的处理过程 经过jieba分词,产生24000条分词结果(sohu_train.txt有24000行数据,每行对应一个分词结果) with open('cutWords_list.txt') as file: cutWords_list = [ k.split() for k in file ] 1)TfidfVectorizer模型 调用sklearn…
一.简介 1)jieba 中文叫做结巴,是一款中文分词工具,https://github.com/fxsjy/jieba 2)word2vec 单词向量化工具,https://radimrehurek.com/gensim/models/word2vec.html 3)LR LogisticRegression中文叫做逻辑回归模型,是一种基础.常用的分类方法 二.步骤 0)建立jupyter notebook 桌面新建名字为基于word2vec的文档分类的文件夹,并进入该文件夹,按住shift,…
<FAQ:OpenCV Haartraining>——使用OpenCV训练Haar like+Adaboost分类器的常见问题 最近使用OpenCV训练Haar like+Adaboost分类器,查阅了一些资料,这些资料对训练过程陈述的很详细,但是缺少一些细节,偶然看到了一篇英文资料,觉得很好,简单翻译了自己觉得有用的部分. 原文链接:FAQ:OpenCV Haartraining 关于正样本图片 1.I have  positive images, how create vec file o…
ZeroMQ 官方地址 :http://api.zeromq.org/4-0:zmq_z85_decode zmq_z85_decode(3)         ØMQ Manual - ØMQ/4.1.0 Name zmq_z85_decode – 从一个用Z85算法生成的文本中解析出二进制密码 Synopsis uint8_t *zmq_z85_decode (uint8_t *dest, char *string); Description zmq_z85_decode()函数将解密stri…
一.使用OpenCV训练好的级联分类器来识别图像中的人脸 当然还有很多其他的分类器,例如表情识别,鼻子等,具体可在这里下载: OpenCV分类器 import cv2 # 矩形颜色和描边 color = (0,0,255) # 红色框 strokeWeight = 1 # 线宽为 1 windowName = "Object Detection" img = cv2.imread("lena.jpg") # 加载检测文件 cascade = cv2.CascadeC…
说要写这篇文章有一段时间了,但因为最近各方面的压力导致心情十二分的不好,下班后往往都洗洗睡了.今天痛定思痛,终于把这件拖了很久的事做了.好,不废话了,现在看看"一个简单的代码生成器" . 先看看界面吧! 简约到如此,说是代码生成器,估计是要被吐槽的.好吧,借用园子里博友的说法,这只是一粒粟子,如果你愿意,你能看到代码生成器的“种子”. 这样运行的! 画了个简图已描述这个简单的代码生成器的工作过程.下面的介绍将以此图展开: 1)读取数据表的信息:从数据库中读取数据表的信息并转换成要为T4…
本文转自:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/RegExp RegExp 构造函数创建了一个正则表达式对象,用于将文本与一个模式匹配. 有关正则表达式的介绍,请阅读 JavaScript指南中的正则表达式章节. 语法节 字面量, 构造函数和工厂符号都是可以的: /pattern/flags new RegExp(pattern [, flags]) RegExp(patt…
最近测试OpenNRE,没有GPU服务器,bert的跑不动,于是考虑用word2vec,捡起fasttext 下载安装 先clone代码 git clone https://github.com/facebookresearch/fastText.git 然后make编译: make 编译后,将生成的fastText移到bin cp fasttext /usr/local/bin/ 训练word2vec 先讲语料分好词,比如保存到sent_train.txt,文件内容是中文分词后的内容: 楚穆王…
书接前文: 从零开始, 开发一个 Web Office 套件 (1): 富文本编辑器 这是一个系列博客, 最终目的是要做一个基于HTML Canvas 的, 类似于微软 Office 的 Web Office 套件, 包括: 文档, 表格, 幻灯片... 等等. 对应的Github repo 地址: https://github.com/zhaokang555/canvas-text-editor 2.5 观察一下幻灯片中的文本框 我们发现: 一个文本框中有若干行文字 一行文字中每个字符的大小,…
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch.Keras和TensorFlow等深度学习框架,实现最先进的体系结构变得非常容易.这些框架提供了一种简单的方法来实现复杂的模型体系结构和算法,而只需要很少的概念知识和代码技能.简而言之,它们是数据科学社区的一座金矿! 在本文中,我们将使用PyTorch,它以其快速的计算能力而闻名.因此,在本文中,…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了基于MCMC的Gibbs采样算法,如果你对MCMC和Gibbs采样不熟悉,建议阅读之前写的MCMC系列MCMC(四)Gibbs采样. 1. Gibbs采样算法求解LDA的思路 首先,回顾LDA的模型图如下: 在Gibbs采样算…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L…
代码仓库: https://github.com/brandonlyg/cute-dl 目标         上阶段cute-dl已经可以构建基础的RNN模型.但对文本相模型的支持不够友好, 这个阶段的目标是, 让框架能够友好地支持文本分类和本文生成任务.具体包括: 添加嵌入层, 为文本寻找高效的向量表示. 添加类别抽样函数, 根据模型输出的类别分布抽样得到生成的文本. 使用imdb-review数据集验证文本分类模型. 使用一个古诗数据集验证文本生成模型.         这阶段涉及到的代码比…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,以下简称LDA).注意机器学习还有一个LDA,即线性判别分析,主要是用于降维和分类的,如果大家需要了解这个LDA的信息,参看之前写的线性判别分析LDA原理总结.文本…
在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解,但是计算量和处理速度则比LSI快,它是怎么做到的呢? 1. 非负矩阵分解(NMF)概述 非负矩阵分解(non-negative matrix factorization,以下简称NMF)是一种非常常用的矩阵分解方法,它可以适用于很多领域,比如图像特征识别,语音识别等,这里我们会主要关注于它在文本主…
在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法.本文关注于潜在语义索引算法(LSI)的原理. 1. 文本主题模型的问题特点 在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类.而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布.从这个方面来说,主题模型和普通的聚类算法非常的类似.但是两者其实还是有区别的. 聚类算法关注于从样本特征的相似度方面将数据聚类.比如通过数据样本之间…
(一)下载inception-v3--见TensorFlow(十四) (二)准备训练用的图片集,因为我没有图片集,所以写了个自动抓取百度图片的脚本-见抓取百度图片 (三)创建retrain.py文件,进行重训练.(因为之前遇到不同版本上的不同,遇到过坑,上源码) # -*- coding: utf-8 -*- # @Author : Felix Wang # @time : 2018/6/27 11:46 # Copyright 2015 The TensorFlow Authors. All…
前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcnn 将上文已完成预数据处理的目录data移动至face_faster_rcnn目录下, 并在face_faster_rcnn目录下创建face_label.pbtxt文件,内容如下: item { id: 1 name: 'face' } 在已下载的TensorFlow Object Detecti…
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安装好后把python.exe的路径加入到全局环境变量path中,方便后续命令) 2. Tensorflow1.13.1(注:目前暂时还不能用tensorflow2.x,因为开源社区还没有针对Windows10+tensorflow2.x的object_detection api参考资料.) 3. P…
以下程序实现将训练集构建为ImageNet模型,训练集图片为56个民族 import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.PrintWriter; public class createTxt { public static void createClassInd(){//56个民族编号及名称 FileOutputStream fou…
在之前的文章中我们详细介绍过Netty中的NioEventLoop,NioEventLoop从本质上讲是一个事件循环执行器,每个NioEventLoop都会绑定一个对应的线程通过一个for(;;)循环来处理事件消息.今天我们就借鉴NioEventLoop,并加入消息分发策略构建一个基础的Eventloop线程模型. 整个线程模型可以划分为三部分 事件监听及分发(Event):  监听消息事件并通过分发器分发: 分发器(Dispatch):将消息按照分发策略分发到对应的事件循环器中: 事件循环器…
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on…
贝叶斯学习方法中有用性非常高的一种为朴素贝叶斯学习期,常被称为朴素贝叶斯分类器. 在某些领域中与神经网络和决策树学习相当.尽管朴素贝叶斯分类器忽略单词间的依赖关系.即如果全部单词是条件独立的,但朴素贝叶斯分类在实际应用中有非常出色的表现. 朴素贝叶斯文本分类算法伪代码: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Cen…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
朴素贝叶斯分类器模型(Naive Bayles) Model basic introduction: 朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式: 先验概率: P(X) or P(Y) 条件概率: P(X|Y)=P(XY)\P(Y)  => P(XY)=P(X|Y)*P(Y)   ① 后验概率: P(Y|X)=P(YX)\P(X)  结合①式可以推导=> P(Y|X)=P(X|Y)*P(Y)\P(X) 朴素贝叶斯分类器:它可以计算数据的每一个维度 被分…