广播法则 所有数组向维度最高的数组看齐,若维度不足则在最前面的维度用1补齐 扩展维度后,所有数组在某一维度相同或者长度为1,否则不能计算 当可以计算时,将长度为1的维度扩展为另一数组相应维度的长度 a = torch.ones(3, 2) b = torch.zeros(2,3,1) a + b # a : (3, 2)-->(1, 3, 2) # a : (1, 3, 2)-->(2, 3, 2) # b : (2, 3, 1)-->(2, 3, 2) # a + b : (2, 3,…
NumPy 广播(Broadcast) 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行. 如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘.这要求维数相同,且各维度的长度相同. 实例 import numpy as np a = np.array([1,2,3,4]) b = np.array([10,20,30,40]) c…
1.广播的引出 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行. 如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘.这要求维数相同,且各维度的长度相同. >>> import numpy as np >>> a =np.arange(,) >>> b =np.arange(,) &g…
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行. 如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘.这要求维数相同,且各维度的长度相同. import numpy as np a = np.array([1,2,3,4]) b = np.array([10,20,30,40]) c = a * b print (c) 当运算中…
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式,对数组的算术运算通常在相应的元素上进行. 如果两个数组 a 和 b 形状相同,即满足a.shape == b.shape,那么 a*b的结果就是 a 与 b 数组对应为相乘.这要求位数相同, 且个维度的长度相同. 实例: import numpy as np a = np.array([, , , ]) b = np.array([,,,]) c = a * b print(c) 输出结果为: [ ] 当…
1.直接奉献代码,后期有入门更新,之前一直在学的是TensorFlow, import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np x_data = np.arange(-2*np.pi,2*np.pi,0.1).reshape(-1,1) y_data = np.sin(x_data).re…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 Tensor Tensor可以是一个数(标量).一维数组(向量).二维数组(矩阵)或更高维的数组(高阶数据) Tensor和numpy的ndarrays类似,不同在于pytorch的tensor支持GPU加速 导包: from __future__ import print_function import torch as t 判断是否…
NumPy — NumPy http://www.numpy.org/ NumPy is the fundamental package for scientific computing with Python. NumPy - Wikipedia https://en.wikipedia.org/wiki/NumPy NumPy (pronounced /ˈnʌmpaɪ/ (NUM-py) or sometimes /ˈnʌmpi/[1][2] (NUM-pee)) is a library…
(1)NumPy - 切片和索引 l ndarray对象中的元素遵循基于零的索引. 有三种可用的索引方法类型: 字段访问,基本切片和高级索引. l 基本切片 Python 中基本切片概念到 n 维的扩展.切片只是返回一个观图. l 如果一个ndarray是非元组序列,数据类型为整数或布尔值的ndarray,或者至少一个元素为序列对象的元组,我们就能够用它来索引ndarray.高级索引始终返回数据的副本. 有两种类型的高级索引:整数和布尔值. 整数索引实例 import numpy as n…