题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中1<=i <j <n. 要是求gcd(n , x) = y的个数的话,那么就是求gcd(n/y , x/y) = 1的个数,也就是求n/y的欧拉函数.这里先预处理出欧拉函数,然后通过类似筛法的技巧筛选出答案累加起来. #include <iostream> #include &l…
Given the value of N, you will have to find the value of G. The definition of G is given below:Here GCD(i, j) means the greatest common divisor of integer i and integer j.For those who have trouble understanding summation notation, the meaning of G i…
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 i 的且1<=x<=N-1的x的个数为 g(i,N). 则F(N)  = sigma{ i * g(i,N) }. 因为gcd(x,N) == i 等价于 gcd(x/i, N/i)  == 1,且满足gcd(x/i , N/i)==1的x的个数就是 N/i 的欧拉函数值.所以g(i,N) 的值…
Given the value of N, you will have to find the value of G. The definition of G is given below:G =i<N∑i=1j∑≤Nj=i+1GCD(i, j)Here GCD(i, j) means the greatest common divisor of integer i and integer j.For those who have trouble understanding summation no…
分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include <vector> #include <cmath> #include <map> #include <queue> #include <algorithm> #include <cstring> using namespace std;…
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此题和UVA 11426 一样,不过n的范围只有20000,但是最多有20000组数据. 当初我直接照搬UVA11426,结果超时,因为没有预处理所有的结果(那题n最多4000005,但最多只有100组数据),该题数据太多了额... 思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+g…
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13015 143295493160 Solution 这道题我用莫比乌斯反演和欧拉函数都写了一遍,发现欧拉函数比莫比乌斯反演优秀? 求所有\(gcd=k\)的数对的个数,记作\(f[k],ans=\sum_{i=1}^{n}(f[i]-1)\),为什么还要-1,我们注意到\(j=i+1\),自己与自己…
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=473&problem=2421&mosmsg=Submission+received+with+ID+13800900 Given the value of N, you will have to find the value of G. The definition…
题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 0<x<n 且 gcd(x,n) = 1 的x有euler[n]个. 2. 可以推论出:满足 0<2*x<2*n 且 gcd(2*x,2*n) = 2 的2*x同样有euler[n]个,推向一般:满足 0<k*x<k*n 且 gcd(k*x,k*n) = k 的k*x有eu…
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n - 1, n).这种话,就能够得到递推式S(n) = f(2) + f(3) + ... + f(n) ==> S(n) = S(n - 1) + f(n);. 这样问题变成怎样求f(n).设g(n, i),表示满足gcd(x, n)…
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所以最终答案是将ans[0]一直加到ans[n].当 k*i==j 时,ans[j]=k*euler[i]. 看完题解瞬间领悟:神奇海螺 突然忘记欧拉函数是什么:欧拉函数 代码: #include<cstdio> #include<cstring> #include<cstdlib…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard Input Output: Standard Output Given the value of N, you will have to find the value of G. The definition of G is given below: Here GCD(i,j) means the…
题目链接:https://vjudge.net/problem/UVA-11426 题目大意: 给出整数n∈[2,4000000],求解∑gcd(i,j),其中(i,j)满足1≤i<j≤n. 的确没有想到是欧拉函数,这怎么会想到欧拉函数呢?  又不是要我们求所有gcd为1的个数  那些gcd不为1的怎么办呢?  当时怎么就没想到呢  除过去不就变为1了吗  自己是真的菜... 还是要多做题,把思维开阔起来!!! 思路在代码中  直接看代码: /** 欧拉函数三个性质 是素数的话 欧拉函数值等于它…
题目: SPOJ-GCDEX (洛谷 Remote Judge) 分析: 求: \[\sum_{i=1}^{n}\sum_{j=i+1}^{n}gcd(i,j)\] 这道题给同届新生讲过,由于种种原因只讲了 \(O(n)\) 预处理欧拉函数 \(O(n)\) 查询的暴力做法,顺带提了一句 "这题能根号查询" 被教练嘴了 QAQ .以及小恐龙给我说有 \(O(n\log n)\) 预处理 \(O(1)\) 查询的另一种写法. 重点是前几天某学长讲课讲这道题,才知道有 \(O(n)\) 预…
题意:求sum(gcd(i,j),1<=i<j<=n). 思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和 问题转化为了求f(n),由于小于n的数与n的gcd一定是n的因数, 所以f(n)能够表示为sum(i)*i,当中sum(i)表示全部和n的gcd为i的数的数量,我们要求满足gcd(a, n) = i,的个数,能够转化为求gcd(a/i, n/i) = 1的个数, 于是能够发现sun(i) = phi(n/i),这…
<训练指南>p.125 设f[n] = gcd(1, n) + gcd(2, n) + …… + gcd(n - 1, n); 则所求答案为S[n] = f[2]+f[3]+……+f[n]; 求出f[n]即可递推求得S[n]:S[n] = S[n - 1] + f[n]; 所有gcd(x, n)的值都是n的约数,按照约数进行分类,令g(n, i)表示满足gcd(x, n) = i && x < n 的正整数x的个数,则f[n] = sum{ i * g(n, i) | n…
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2421 代码及其注释: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <cmath> #include <…
GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.(a,b) can be…
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y)=k的对数,则将b/k,d/k,然后求GCD(x,y)=1的对数即可.假设b/k >= d/k ;对于1到b/k中的某个数s,如果s<=d/k,则因为会有(x,y)和(y,x)这种会重复的情况,所以这时候的对数就是比s小的与s互质的数的个数,即s的欧拉函数.至于重复的情况是指:在d/k中可能有大于…
题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样的,所以我们只要求出第一象限可见的点数然后×4+4,即是K. 可见的点满足gcd(x, y) = 1,于是将问题转化为x∈[1, a], y∈[1, b],求gcd(x, y) = 1的个数. 类比HDU 1695可以用莫比乌斯反演来做,我还写了普通的和分块加速的两份代码,交上去发现运行时间相差并不…
GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2673    Accepted Submission(s): 1123 Problem Description Do you have spent some time to think and try to solve those unsolved problem af…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于样例(2,2),(2,4),(3,3),(4,2) 1&…
GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2611    Accepted Submission(s): 1090 Problem Description Do you have spent some time to think and try to solve those unsolved problem a…
题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, b/k] $ 内 \(gcd(x, y) = 1\) 的(x, y)的对数. 假设a < b, 那么[1, a/k]这部分可以用欧拉函数算. 设 \(i\in (a/k, b/k]\), (a/k, b/k]这部分可以用容斥算, 用a/k减去[1, a/k]里面和i不互质的数的个数. 具体看代码.…
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对(x,y)有多少对 思路:先筛出n以内所有的素数顺便筛出欧拉函数,\(gcd(x,y)=k\)等价于\(gcd(\frac{x}{k},\frac{y}{k})=1\) 所以这个问题可以转化为求\(ans=\sum_{i=1}^{tot}\sum_{j=1}^{n/prime[i]}phi[j]\) ,tot为…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. 题目又说a==c==1,所以就是求[1,b]与[1,d]中gcd等于k的个数,因为若gcd(x,y)==z,那么gcd(x/z,y/z)==1,又因为不是z的倍数的肯定不是,所以不是z的倍数的可以直接去…
link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD粘过来就行 代码太丑,没开O2 TLE5个点 #include <cstdio> #include <functional> using namespace std; const int fuck = 10000000; int prime[10000010], tot; bool v…
题意:给一个 n,m,统计 2 和 n!之间有多少个整数x,使得x的所有素因子都大于M. 析:首先我们能知道的是 所有素数因子都大于 m 造价于 和m!互质,然后能得到 gcd(k mod m!, m!) = 1,也就是只要能求出不超过 m!且和 m! 互质的个数就好,也就是欧拉函数呗,但是,,,m!也非常大,根本无法用筛选法进行,但是可以通过递推进行,根据欧拉公式,能知道n! 和 (n-1)! 如果n为中素数,那么它们的素因子肯定是一样的,如果n是素数,那么就会多一项,所以我们能够得到递推式.…
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]$ 后面那个就莫比乌斯反演入门题辣$QwQ$? 就变成$\sum_{p=1}^{n}[p\mbox{为质数}]\sum_{d=1}^{n/p}\mu(d)\lfloor \frac {n/p}{d}\rfloor^2$ 十分套路的,后面显然可以数论分块,就变成了$\sum_{p=1…
题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1). 设f(n)为 集合S{(x, y) | x<y且x.y互素} 的个数,则所求答案为2f(n)+1 f(n)表达式为: ,其中φ(n)为欧拉函数 这里有欧拉函数的一些介绍 #include <cstdio> ; ], sum[maxn + ]; void phi_table(int n)…