python实现布隆过滤器及原理解析】的更多相关文章

python实现布隆过滤器及原理解析     布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 "某样东西一定不存在或者可能存在".这篇文章主要介绍了python实现布隆过滤器 ,需要的朋友可以参考下   在学习redis过程中提到一个缓存击穿的问题, 书中参考的解决方案之一是使用布隆过滤器, 那么就有必要来了解一下什么是布隆过滤器.在参考了许多博客之后,…
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, gmail等邮箱垃圾邮件过滤功能 这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中? 常规思路 数组 链表 树.平衡二叉树.Trie Map (红黑树) 哈希表 虽然上面描述的这几种数据结构配合常见的排序.二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求.但是当集合里…
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难.hash原理Hash (哈希,或者散列)函数在计算机领域,尤其是数据快速查找领域,加密领域用的极广.其作用是将一个大的数据集映射到一个小…
欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只…
专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt+moviepy音视频剪辑实战 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一.简介 布隆过滤器(BloomFilter)是一种比较巧妙的概率型数据结构(probabilistic data structure),它是1970年由布隆提出的一种空间空间效率很高的随机数据结构.它利用位数组很简洁地表示一个集合,并判断一个元素是否属于这个集合.一个空的布隆过滤器有长度为M比特的bi…
一.布隆过滤器: 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难.布隆过滤器是与哈希算法是相关的,是工业实践上常用的算法,之前我们使用HashMap或者HashSet来查找重复的话也是可以的,但是对于在数据量比较大的情况下去查询那么速度就比较慢了,这个时候对于大的数据量来进行检索使用布隆过滤查找速…
今天主要讨论:哈希函数.哈希表.布隆过滤器.一致性哈希.并查集的介绍和应用. 题目一 认识哈希函数和哈希表 1.输入无限大 2.输出有限的S集合 3.输入什么就输出什么 4.会发生哈希碰撞 5.会均匀分布,哈希函数的离散性,打乱输入规律 public class Code_01_HashMap { public static void main(String[] args) { HashMap<String, String> map = new HashMap<>(); map.p…
Bloom Filter布隆过滤器算法背景如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间.在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低.此时需要考虑解决的问题就是,在数据量比较大的情…
通过Lua脚本批量插入数据到布隆过滤器 有关布隆过滤器的原理之前写过一篇博客: 算法(3)---布隆过滤器原理 在实际开发过程中经常会做的一步操作,就是判断当前的key是否存在. 那这篇博客主要分为三部分: 1.几种方式判断当前key是否存在的性能进行比较. 2.Redis实现布隆过滤器并批量插入数据,并判断当前key值是否存在. 3.针对以上做一个总结. 一.性能对比 主要对以下方法进行性能测试比较: 1.List的 contains 方法 2.Map的 containsKey 方法 3.Go…
目录 1. 布隆过滤器的概念 2. 布隆过滤器应用场景 3. 布隆过滤器工作原理 4. 布隆过滤器的优缺点 5. 布隆过滤器注意事项 6. Go实现布隆过滤器 1. 布隆过滤器的概念 布隆过滤器(Bloom Filter) 是由 Howard Bloom在1970年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员,即判定 "可能已存在和绝对不存在" 两种情况.如果检测结果为是,该元素不一定在集合中:但如果检测结果为否,该元素一定不在集合中,…
原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途径,通常情况下只有系统的部分数据.当请求了缓存中没有的数据时,这时候就会回源到DB里面.此时如果黑客故意对上面数据发起大量请求,则DB有可能会挂掉,这就是缓存击穿.当然缓存挂掉的话,正常的用户请求也有可能造成缓存击穿的效果. 缓存中无值(未宕机) 互斥锁 我们最先想到的应该是加锁获取缓存.也就是当获…
布隆过滤器出现的背景: 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间. 在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低.  布隆过滤器的特点: 此时需要考虑解决的问题就是,在数据量比…
什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只要参数设置的合理,它的精确度也可以控制的相对精确,只会有小小…
本文介绍了布隆过滤器的概念及变体,这种描述非常适合代码模拟实现.重点在于标准布隆过滤器和计算布隆过滤器,其他的大都在此基础上优化.文末附上了标准布隆过滤器和计算布隆过滤器的代码实现(Java版和Python版) 本文内容皆来自 <Foundations of Computers Systems Research>一书,自己翻译的,转载请注明出处,不准确的部分请告知,欢迎讨论. 布隆过滤器是什么? 布隆过滤器是一个高效的数据结构,用于集合成员查询,具有非常低的空间复杂度.     标准布隆过滤器…
布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概率性数据结构(probabilistic data structure). 空间效率 我们来仔细地看看它的空间效率.如果你想在集合中存储一系列的元素,有很多种不同的做法.你可以把数据存储在hashmap,随后在hashmap中检索元素是否存在,hashmap的插入和查询的效率都非常高.但是,由于ha…
前言 上一节我们详细讲解了过滤器的创建过程以及粗略的介绍了五种过滤器,用此五种过滤器对实现对执行Action方法各个时期的拦截非常重要.这一节我们简单将讲述在Action方法上.控制器上.全局上以及授权上的自定义特性的执行过程. APiController 之前有讲到该APiController,也就稍微介绍了,这节我们来详细此Web API控制器的基类: public abstract class ApiController : IHttpController, IDisposable { /…
前言 Web API的简单流程就是从请求到执行到Action并最终作出响应,但是在这个过程有一把[筛子],那就是过滤器Filter,在从请求到Action这整个流程中使用Filter来进行相应的处理从而作出响应,这对于认证以及授权等是及其重要的,所以说过滤器应用是Web API框架中非常重要的一种实现方式,我们有必要去探讨其原理. 过滤器及其提供机制 Web API框架提供了一个请求.响应的消息处理管道,并且其框架极具扩展性,通过其扩展可以对执行的流程进行适当的干预,其扩展点就体现在以下三个方面…
转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的算法,一直在听这个名词,但一直没有正儿八经的去了解,今天看到了一篇关于Bloom Filter 的讲解,真是有种沁人心脾的感觉.转过来加深自己的了解. 在开始转载之前,为了加深读者的印象,先介绍一下在BloomFilter里面含有的重要角色 先在脑中留下印象,然后在来消化转载的内容 Bloom Fi…
一.easy_install 安装过程 其安装过程有很多种,我也找了很多的例子,但是结果都不太好,以下方法的结果是不错的. easy_install与yum类似,使用easy_install,可以轻松在pypi软件库里面搜索python各类软件 安装easy_install比较简单,如果配置好yum,就可以直接搜索python-setuptools yum –y install python-setuptools 安装完python-setuptools之后,还需要安装python-devel…
布隆过滤器的实现方法1:自己实现 参考 http://www.cnblogs.com/naive/p/5815433.html bllomFilter两个参数分别代表,布隆过滤器的大小和hash函数的个数 #coding:utf-8 #!/usr/bin/env python from bitarray import bitarray # 3rd party import mmh3 import scrapy from BeautifulSoup import BeautifulSoup as…
第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一…
Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一个Hash函数将…
在命令行中使用 Python 时,它可以接收大约 20 个选项(option),语法格式如下: python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | - ] [args] 本文想要聊聊比较特殊的"-m"选项:关于它的典型用法.原理解析与发展演变的过程. 首先,让我们用"--help"来看看它的解释: -m mod run library module as a script (term…
引子 <数学之美>介绍布隆过滤器非常经典: 在日常生活中,包括设计计算机软件时,经常要判断一个元素是否在一个集合中.比如: 在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断它是否在已知的字典中): 在FBI,一个嫌疑人的名字是否已经在嫌疑犯的名单上: 在网络爬虫里,一个网站是否已访问过: yahoo, gmail等邮箱垃圾邮件过滤功能,等等 ... 以上场景需要解决的共同问题是:如何查看一件事物是否在有大量数据的集合里. 通常的做法有以下几种思路: 数组. 链表. 树.平衡二叉树…
布隆过滤器原理介绍 [1]概念说明 1)布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难. [2]设计思想 1)BF是由一个长度为m比特的位数组(bit array)与k个哈希函数(hash function)组成的数据结构.位数组均初始化为0,所有哈希函数都可以分别把输入数据尽量均匀地散列. 2)当…
说到布隆过滤器不得不提到,redis, redis作为现在主流的nosql数据库,备受瞩目:它的丰富的value类型,以及它的偏向计算向数据移动属性减少IO的成本问题.备受开发人员的青睐.通常我们使用redis作为数据缓存来使用,但是作为缓存redis会有一些问题,就是缓存穿透问题.击穿.雪崩.一致性双写.本次主要讲解的就是穿透问题 首先我们先思考一下为什么会产生穿透的问题. 假设我们有一些数据,存储在了MySQL中,但是由于用户量的庞大我们需要在在用户访问数据的时候需要在redis中进行一个过…
布隆过滤器 布隆过滤器(Bloom Filter)是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概率性数据结构(probabilistic data structure). 空间效率 我们来仔细地看看它的空间效率.如果你想在集合中存储一系列的元素,有很多种不同的做法.你可以把数据存储在hashmap,随后在hashmap中检索元素是否存在,hashmap的插入和查询的…
Apache和Nginx运行原理解析 原文:https://www.server110.com/nginx/201402/6543.html Web服务器 Web服务器也称为WWW(WORLD WIDE WEB)服务器,主要功能是提供网上信息浏览服务. 应用层使用HTTP协议. HTML文档格式. 浏览器统一资源定位器(URL). Web服务器常常以B/S(Browser/Server)方式提供服务.浏览器和服务器的交互方式如下: GET /index.php HTTP/1.1 +-------…
布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单来说就是通过多次hash将key存进一个集合中,可以灰常快速地在数亿级的数据中快速查找! 实现布隆过滤器需要用bit位存储的数组, 千万别用int[] ,毕竟一个int整形占32位,一个int = 32 bit! 但是Java没有bit, 那用byte吧,一个byte(8位)当做8位的bit来算吧,每一位代表…
Redis中的HyperLogLog 一般我们评估一个网站的访问量,有几个主要的参数: pv,Page View,网页的浏览量 uv,User View,访问的用户 一般来说,pv 或者 uv 的统计,可以自己来做,也可以借助一些第三方的工具,比如 cnzz,友盟 等. 如果自己实现,pv 比较简单,可以直接通过 Redis 计数器就能实现.但是 uv 就不一样,uv 涉及到另外一个问题,去重. 我们首先需要在前端给每一个用户生成一个唯一 id,无论是登录用户还是未登录用户,都要有一个唯一 id…