Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面).该项目是由John Hunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口.如果结合Python IDE使用比如PyCharm,matplotlib还具有诸如缩放和平移等交互功能.它不仅支持各种操作系统上许多不同的GUI后端,而且还能将图片导出为各种常见的矢量…
#输出散点图 def f(): datingDataMat,datingLabels = file2matrix("datingTestSet3.txt") fig = plt.figure() # ax = fig.add_subplot(199,projection='polar') # ax = fig.add_subplot(111,projection='hammer') # ax = fig.add_subplot(111,projection='lambert') # a…
台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python3 写一遍.python3 与python2 不同的地方会在程序中标出. 代码及数据:https://github.com/zle1992/MachineLearningInAction k-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高.对K的取值敏感!!! 适用…
关于可视化: <机器学习实战>书中的一个小错误,P22的datingTestSet.txt这个文件,根据网上的源代码,应该选择datingTestSet2.txt这个文件.主要的区别是最后的标签,作者原来使用字符串‘veryLike’作为标签,但是Python转换会出现ValueError: invalid literal for int() with base 10: 'largeDoses'的错误.所以改成后面的文件就可以了.后面直接用1 2 3 代表not like, general l…
python机器学习实战(一) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7140974.html  前言 这篇notebook是关于机器学习中监督学习的k近邻算法,将介绍2个实例,分别是使用k-近邻算法改进约会网站的效果和手写识别系统.操作系统:ubuntu14.04    运行环境:anaconda-python2.7-notebook    参考书籍:机器学习实战      notebook  writer ----方阳  k-…
机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的第一个机器学习算法:k-近邻算法,它非常有效而且易于掌握.首先,我们将探讨k-近邻算法的基本理论,以及如何使用距离测量的方法分类物品:其次我们将使用Python从文本文件中导入并解析数据:再次,本文讨论了当存在许多数据来源时,如何避免计算距离时可能碰到的一些常见错误:最后,利用实际的例子讲解如何使用k-近邻算…
knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法:不适用 5.测试算法:计算正确率 6.使用算法:需要输入样本和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理. 2.1.1 导入数据 operator是排序时要用的 from numpy import * import operato…
内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. <机器学习实战>主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.AdaBoost集成方法.基于树的回归算法和分类回归树(CART)算法等.第三部分则重点介绍无监督…
K-近邻算法概述 简单的说,K-近邻算法采用不同特征值之间的距离方法进行分类 K-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用范围:数值型和标称型. k-近邻算法的一般流程 收集数据:可使用任何方法 准备数据:距离计算所需要的数值,最好是结构化的数据格式. 分析数据:可以使用任何方法. 训练算法:此步骤不适用于K-近邻算法 使用算法:首先需要输入样本数据和节后话的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分…
本章介绍第一个机器学习算法:A-近邻算法,它非常有效而且易于掌握.首先,我们将探讨女-近邻算法的基本理论,以及如何使用距离测量的方法分类物品:其次我们将使用?7««^从文本文件中导人并解析数据: 再次,本书讨论了当存在许多数据来源时,.如何避免计算距离时可能碰到的一些常见错误:最后,利用实际的例子讲解如何使用匕近邻算法改进约会网站和手写数字识别系统. 一.K-近邻算法概述--------->K-近邻算法采用测量不同特征值之间的距离方法进行分类. 工作原理是:存在一个样本数据集合,也称作训练样本集…