1295 XOR key 2 秒 262,144 KB 160 分 6 级题   给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少? 收起   输入 第1行:2个数N, Q中间用空格分隔,分别表示数组的长度及查询的数量(1 <= N <= 50000, 1 <= Q <= 50000). 第2 - N+1行:每行1个数,对…
51nod 1295 XOR key 这也是很久以前就想做的一道板子题了--学了一点可持久化之后我终于会做这道题了! 给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少? Input 第1行:2个数N, Q中间用空格分隔,分别表示数组的长度及查询的数量(1 <= N <= 50000, 1 <= Q <= 50000). 第…
[51nod 1295]Xor key(可持久化trie) 题面 给出一个长度为n的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少? 分析 可持久化trie裸题 代码 #include<iostream> #include<cstdio> #define maxb 31 #define maxn 200000 #define maxs 6…
1295 XOR key  题目来源: HackerRank 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少? Input 第1行:2个数N, Q中间用空格分隔,分别表示数组的长度及查询的数量(1 <= N <= 50000, 1 <…
概念 可持久化线段树又叫主席树,之所以叫主席树是因为这东西是fotile主席创建出来的. 可持久化数据结构思想,就是保留整个操作的历史,即,对一个线段树进行操作之后,保留访问操作前的线段树的能力. 最简单的方法,每操作一次,建立一颗新树.这样对空间的需求会很大.而注意到,对于点修改,每次操作最多影响 $O(\log n)$ 个节点,于是,其实操作前后的两个线段树,结构一样,因此可以共享未被影响的节点,被影响的就新建节点.于是,这样的线段树,每次操作需要O(log2(n))的空间. 线段树对于每个…
题意 给出一个长度为\(n\)的正整数数组\(a\),再给出\(q\)个询问,每次询问给出3个数,\(L,R,X(L<=R)\).求\(a[L]\)至\(a[R]\)这\(R-L+1\)个数中,与\(x\)进行异或运算(Xor), 得到的最大值为多少. 分析 前置知识:通过01字典树可以贪心的得到一个数与若干个数中进行异或运算的最大值. 在这里每次询问我们要得到\(a[L]\)至\(a[R]\)的数与\(x\)进行异或运算的最大值,每次建立区间\([L,R]\)的字典树来查询的话会超时而且浪费了…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1295 1295 XOR key  题目来源: HackerRank 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题  收藏  关注 给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得…
题意 题目链接 Sol 设\(sum[i]\)表示\(1 - i\)的异或和 首先把每个询问的\(x \oplus sum[n]\)就变成了询问前缀最大值 可持久化Trie树维护前缀xor,建树的时候维护一下每个节点被遍历了多少次 注意设置好偏移量,不然询问区间为\([1, 1]\)的时候可能挂掉 #include<bits/stdc++.h> using namespace std; const int MAXN = 6e5 + 10; inline int read() { char c…
Description 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的长度\(N+1\). Q l r x:询问操作,你需要找到一个位置\(p\),满足\(l \leq p \leq r\),使得: \(a[p] \oplus a[p+1] \oplus ... \oplus a[N] \oplus x\) 最大,输出最大是多少. Input 第一行包含两个整数 \(N,M\)…
题目描述 给定n个非负整数A[1], A[2], ……, A[n].对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n-1)/2个新的数.求这些数(不包含A[i])中前k小的数.注:xor对应于pascal中的“xor”,C++中的“^”. 输入 第一行2个正整数 n,k,如题所述.以下n行,每行一个非负整数表示A[i]. 输出 共一行k个数,表示前k小的数. 样例输入 4 5 1 1 3 4 样例输出 0 2 2 5 5…
题目大意:让你维护一个序列,支持在序列末插入一个数,支持询问$[l,r]$区间内选择一个位置$p$,使$xor\sum_{i=p}^{n}a_{i}$最大 可持久化$01Trie$裸题,把 区间异或和 转化为区间端点前缀异或和的异或值 即求$xsum_{n}\;xor\;max(xsum_{i})i\in[l-1,r-1]$的最大值 那么在可持久化$01Trie$里是$r-1$的$Trie$对$l-2$的$Trie$做差 需要先把$0$推入$Trie$里 #include <cmath> #i…
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出与他异或起来最大的左端点并将这组信息用结构体存起来插入堆中. 那么最大值就是堆顶那组(假设右端点为$r$),但考虑到次大值可能出自同一个右端点,所以在弹出堆顶后还需要将以$r$为右端点的次大值插入堆中. 那么如何求出以$r$为右端点的最大值和次大值? 我们对序列每个数为一个版本建可持久化$trie$…
$ \color{#0066ff}{ 题目描述 }$ 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 \(n\) 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 \(1\) 到 \(n\).第 \(i\) 种馅儿具有一个非负整数的属性值 \(a_i\).每种馅儿的数量都足够多,即小粽不会因为缺少原料而做不出想要的粽子.小粽准备用这些馅儿来做出 \(k\) 个粽子. 小粽的做法是:选两个整数数 \(l\), \(r\),满足 \(1 \leqslant l…
3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 3519  Solved: 1493[Submit][Status][Discuss] Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满足l<=p<=r,使得: a[p] xor a[p+1] xor ...…
题目大意:给你一个序列,求出第$K$大的两两异或值 先建出来可持久化$01Trie$ 用一个$set$/堆存结构体,存某个异或对$<i,j>$的第二关键字$j$,以及$ai\;xor\;aj$的值,堆中按异或值从小到大排序 每次取出一对$<i,j>$并把它从堆中删除 在$[0,j-1]$的 可持久化$01Trie$ 中把$a_{i}$这个数删除 再查询$[0,j-1]$中和$a_{j}$的异或最大值,重新推入堆中... 反复操作$K$次即可 删除操作中的细节比较多 #include…
题目传送门 思路: 由异或的性质可得,题目要求的式子可以转化成求$max(pre[n]^x^pre[i])$,$pre[i]$表示前缀异或和,那么我们现在就要求出这个东西,所以用可持久化字典树来求,每次贪心的往相反的方向看是否有值,具体看代码即可,模板题,注意最好先插入一个0,查询区间的$(l,r)$也要注意一下端点,记住我们要的是前缀. #include<bits/stdc++.h> #define clr(a,b) memset(a,b,sizeof(a)) typedef long lo…
Description 现在有一颗以\(1\)为根节点的由\(n\)个节点组成的树,树上每个节点上都有一个权值\(v_i\).现在有\(Q\)次操作,操作如下: 1\(\;x\;y\):查询节点\(x\)的子树中与\(y\)异或结果的最大值 2\(\;x\;y\;z\):查询路径\(x\)到\(y\)上点与\(z\)异或结果最大值 Input 第一行是两个数字\(n,Q\); 第二行是\(n\)个数字用空格隔开,第\(i\)个数字\(v_i\)表示点\(i\)上的权值 接下来\(n-1\)行,每…
题目描述 给定一个非负整数序列 {a},初始长度为 N.       有M个操作,有以下两种操作类型:1.A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1.2.Q l r x:询问操作,你需要找到一个位置 p,满足 l<=p<=r,使得:a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少. 输入 第一行包含两个整数 N  ,M,含义如问题描述所示.   第二行包含 N个非负整数,表示初始的序列 A . 接下来 M行,每行描述一个…
题目大意:给你一个长方形矩阵,位置$i,j$上的数是$a_{i}\;xor\;b_{j}$,求某个子矩阵内第$K$大的值 最先想的是二分答案然后验证,然而是$O(qnlogmloga_{i})$,不出意外会被卡..看完题解才恍然大悟 $01Trie$是具有二分性质的!因为每个节点最多有2个儿子! 先对$b$序列建可持久化$01Trie$,记录一个$sum$表示当前节点的子树内有多少个数 对于每次询问,因为$n$很小,暴力枚举$a$进行统计,记录每个a当前在01Trie的位置 接下来就是在$01T…
可持久化线段树 也叫函数式线段树也叫主席树,其主要思想是充分利用历史信息,共用空间 http://blog.sina.com.cn/s/blog_4a0c4e5d0101c8fr.html 这个博客总结的挺好的! 区间k大数问题 对于没有修改的版本,我们可以先离散化然后对权值建树. 结点存储的是该权值范围内出现元素的总次数. 在线段树上找k大数时就像平衡树询问k大数一样根据结点上的信息往左或者往右走. 现在可以利用函数式线段树维护权值出现数量,将数列中每个结点依次插入线段树, 第r次插入后的线段…
题目大意:给定一个序列,提供下列操作: 1.在数组结尾插入一个数 2.给定l,r,x,求一个l<=p<=r,使x^a[p]^a[p+1]^...^a[n]最大 首先我们能够维护前缀和 然后就是使x^sum[n]^sum[p-1]最大 x^sum[n]为定值,于是用Trie树贪心就可以 考虑到l-1<=p-1<=r-1,我们不能对于每一个询问都建一棵Trie树,可是我们能够对于Trie数维护前缀和,建立可持久化Trie树 每一个区间[l,r]的Trie树为tree[r]-tree[l…
<题目链接> 题目大意: 给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都只能出现在这个区间. 每个区间的价值为该区间不同的数的异或值之和,现在问你这n个数最大的价值是多少. 解题分析:因为要同一种的所有数只能出现在同一区间,所以我们先对这$n$个数进行预处理,得到他们每种数的最左边的坐标和最右边的坐标.因为数据只有5000,所以状态可以比较暴力地更新,枚举最后一个异或的区间进行更新,用dp值来记录. $dp[i]$表示$[1,i]$中异或值之和的最大值.第$i$个可以选或…
题目链接:https://atcoder.jp/contests/abc121/tasks/abc121_d 题目很裸(Atcoder好像都比较裸 就给一个区间求异或和 n到1e12 肯定不能O(n)推 那肯定得通过异或的一些性质 用$f\left( a,b\right)$表示[a,b]区间的异或和 我只观察出了$f\left( 2^{a},2^{b}-1\right)$的异或和肯定为0. 通过$f\left( 2^{a},2^{a+1}-1\right)$每一位都会出现偶数次 例如 [4,8)…
Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u与x的gcd可以被k整除,u不大于s-x,且与x的异或和最大. 思路:之前没有碰到过异或和最值的问题,所以是懵逼的.学习了01字典树后把这题补出来. 碰到操作①就上树,上树过程中注意不断维护每个节点往后路径中的最小值(具体见代码细节): 碰到操作②,如果k==1,那么从树上找数的同时注意限制条件最小…
4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor  yj,每次询问给定矩形区域i∈[u,d],j∈[l,r],找出第k大的Aij. Input 第一行包含两个正整数n,m,分别表示两个数列的长度 第二行包含n个非负整数xi 第三行…
Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor yj,每次询问给定矩形区域i∈[u,d],j∈[l,r],找出第k大的Aij. Input 第一行包含两个正整数n,m,分别表示两个数列的长度 第二行包含n个非负整数xi 第三行包含m个非负整数yj 第四行包含一个正整数p,表示询问次数 随后p行,每行均包含5个正整数,用来描述一次询问,每行包含五个正整数u,d,l,r,k,含…
我们观察数据:树套树 PASS    主席树 PASS  一层一个Trie PASS 再看,异或!我们就把目光暂时定在01Tire然后我们发现,我们可以带着一堆点在01Trie上行走,因为O(n*q*30+m*30)是一个可选复杂度. 我们想一下我们正常的时候的01Trie其实是通过在每一层比较大小来确定这一为是0还是1,所以我们从上到下一位一位地走,统计每在这一位异或值为1的数的个数,如果这一位是一的个数大于k那么我们就使这一位为1,那么我们就舍弃这一位为0的状态就是所有的点都走变为1的路,如…
题目链接 BZOJ4592 题解 可持久化trie树裸题 写完就A了 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define REP(i,n) for (i…
可持久化线段树模板题. #include <iostream> #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <ctime> #include <vector> using namespace std; ]; ],Left[],Right[]; ]; v…
第一次写可持久化trie指针版我... //Null 的正确姿势终于学会啦qaq... #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #defin…