前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html.这里给出的训练样本的特征为80个学生的两门功课的分数,样本值为对应的同学是否允许被上大学,如果是允许的话则用'1'表示,否则不允许就用'0'表示,这是一个典型的二分类问题.在此问题中,给出的80个…
前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regression练习)中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验…
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数.参考的网页资料为:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html.要解决的…
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8.1.传统神经网络的训练方法为什么不能用在深度神经网络 BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想.深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源. BP算法存在的问题: (1)梯度越来越稀疏:从顶层越往下,误差…
转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因为sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征.本文的内容是参考斯坦福deep learning教程:Sparse Coding,Sparse Coding: Autoencoder Interpretation,对应的中文教程见稀疏编码,…
整理自Adrew Ng 的 machine learning课程week3 目录: 二分类问题 模型表示 decision boundary 损失函数 多分类问题 过拟合问题和正则化 什么是过拟合 如何解决过拟合 正则化方法 1.二分类问题 什么是二分类问题? 垃圾邮件 / 非垃圾邮件? 诈骗网站 / 非诈骗网站? 恶性肿瘤 / 非恶性肿瘤? 用表达式来表示:$y\in\left \{ 0,1 \right \}$, \begin{Bmatrix} 0& : & nagetive &…
1. Sigmoid Function In Logisttic Regression, the hypothesis is defined as: where function g is the sigmoid function. The sigmoid function is defined as: 2.Cost function and gradient The cost function in logistic regression is: the gradient of the cos…
1 线性回归 回归就是对已知公式的未知参数进行估计.线性回归就是对于多维空间中的样本点,用特征的线性组合去拟合空间中点的分布和轨迹,比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y)训练数据对a和b的取值去自动估计.估计的方法是在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值,直到找到那个最符合样本点分布的参数(或参数组合).也就是给定训练样本,拟合参数的过程,对y= a*x + b来说这就是有一个特征x两个参数a b,多个样本的话比如…
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex2/ex2.html.本题给出的是50个数据样本点,其中x为这50个小朋友到的年龄,年龄为2岁到8岁,年龄可有小数形式呈现.Y为这50个小朋友对应的身高,当然也是小数形式表示的.现在的问题是要根据这50个训练样本,估…
前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长.不过在这这之前还是复习下machine learning的基础知识,见网页:http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning.内容其实很短,每小节就那么几分钟,且讲得非常棒. 教程中的一些术语: Model repr…