MT【39】构造二次函数证明】的更多相关文章

这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二次函数利用$\Delta$证明,效果非常理想.…
(2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f(a))$是该二次函数的三个根,故他们当中必有两个相等,从而易得$q=1$,故$f(a)=a$…
评:b+c,bc好比向量里的一组基底,可以将关于b,c的对称式表示出来.…
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a}$ 证明:$\{k_n\}$为整数数列. 提示:注意到$x^3=x^2+x+1$故 $a^{n+1}=a^n+a^{n-1}+a^{n-2}$$b^{n+1}=b^n+b^{n-1}+b^{n-2}$$c^{n+1}=c^n+c^{n-1}+c^{n-2}$从而可得$k^{n+1}=k^n+k^{…
证明$f(x)=sinx^2$不是周期函数. 反证:假设是周期函数,周期为$T,T>0$. $$f(0)=f(T)\Rightarrow sinT^2=0\Rightarrow T^2=k_1\pi,k_1\in N^{*}$$ $$f(\sqrt{2}T)=f(\sqrt{2}T+T)\Rightarrow sin2T^2=sin(\sqrt{2}T+T)^2$$ $$\Rightarrow 0=sin2k_1\pi=sin(\sqrt{2}T+T)^2$$ $$\Rightarrow(\sq…
解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.…
证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0=cos36^0$得到$sin18^0$的值, 从而得到$cos18^0$的值$$\frac{\sqrt{10+2\sqrt{5}}}{4}$$是无理数,从而利用$cos$的二倍角公式易得 $sin9^0$是无理数.…
证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan12^0,tan24^0$是有理数,进而$\frac{\sqrt{3}}{3}=tan30^0$也是有理数,矛盾. 评:同样的方法可以证明$tan7^0$无理数.…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531 Problem Description Archaeologists find ruins of Ancient ACM Civilization, and they want to rebuild it. The ruins form a closed path on an x-y plane, which has n endpoints. The endpoints locate on (…
Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(Steepest Descent),可用于寻找函数的局部最小值.梯度下降的思路为,函数值在梯度反方向下降是最快的,只要沿着函数的梯度反方向移动足够小的距离到一个新的点,那么函数值必定是非递增的,如图1所示. 梯度下降思想的数学表述如下: b=a−α∇F(a)⇒f(a)≥f(b)(1)(1)b=a−α∇F…