一.概述 Apache Kafka 发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员.Apache Kafka 社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得 Apache Kafka 功能越发丰富.性能越发稳定,成为企业大数据技术架构解决方案中重要的一环. Apache Kafka 作为一个热门消息队列中间件,具备高效可靠的消息处理能力,且拥有非常广泛的应用领域.那么,今天就来聊一聊基于 Kafka 的实时数仓在搜索的实践应用. 二.为什么需要 Kafk…
数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战.在智能商业中,数据的结果代表了用户反馈.获取数据的及时性尤为重要.快速获取数据反馈能够帮助公司更快地做出决策,更好地进行产品迭代,实时数仓在这一过程中起到了不可替代的作用. 如何更好的建设实时数仓.有哪些优秀的生产实践经验可借鉴? 11月28-30日,Flink Forward Asia 邀请来自 Netflix.美团点评.小米.OPPO.菜鸟等数仓专家,聚焦 Flink 实时数仓在数据链路中扮演的角色与在智能商业中…
https://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651749037&idx=1&sn=4a448647b3dae50779bc9ec0e9c10275&chksm=bd12a3e08a652af6ed8b305b0523716e08a81cf99296425cdaf2bbee1e9d8a6aca06c81cdcc1&scene=21#wechat_redirect 总第291篇 2018年 第83篇 引言…
目录: 一. 实时计算初期 二. 实时数仓建设 三. Lambda架构的实时数仓 四. Kappa架构的实时数仓 五. 流批结合的实时数仓 实时计算初期 虽然实时计算在最近几年才火起来,但是在早期也有部分公司有实时计算的需求,但是数据量比较少,所以在实时方面形成不了完整的体系,基本所有的开发都是具体问题具体分析,来一个需求做一个,基本不考虑它们之间的关系,开发形式如下: 早期实时计算 如上图所示,拿到数据源后,会经过数据清洗,扩维,通过Flink进行业务逻辑处理,最后直接进行业务输出.把这个环节…
https://mp.weixin.qq.com/s/hx-q13QteNvtXRpNsE5Y0A 作者 | 知乎数据工程团队编辑 | VincentAI 前线导读:“数据智能” (Data Intelligence) 有一个必须且基础的环节,就是数据仓库的建设,同时,数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务.从智能商业的角度来讲,数据的结果代表了用户的反馈,获取结果的及时性就显得尤为重要,快速的获取数据反馈能够帮助公司更快的做出决策,更好的进行产品迭代,实时数仓在这一过程中…
转:https://mp.weixin.qq.com/s/e8lsGyl8oVtfg6HhXyIe4A AI 前线导读:“数据智能” (Data Intelligence) 有一个必须且基础的环节,就是数据仓库的建设,同时,数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务.从智能商业的角度来讲,数据的结果代表了用户的反馈,获取结果的及时性就显得尤为重要,快速的获取数据反馈能够帮助公司更快的做出决策,更好的进行产品迭代,实时数仓在这一过程中起到了不可替代的作用. 更多优质内容请关注微信…
第一章.flink实时数仓入门 一.依赖 <!--Licensed to the Apache Software Foundation (ASF) under oneor more contributor license agreements. See the NOTICE filedistributed with this work for additional informationregarding copyright ownership. The ASF licenses this fi…
阿里云 AnalyticDB for PostgreSQL 为采用MPP架构的分布式集群数据库,完备支持SQL 2003,部分兼容Oracle语法,支持PL/SQL存储过程,触发器,支持标准数据库事务ACID.AnalyticDB PG通过行存储.列存储.多种分区表和索引等机制,可以支持海量数据的交付分析,也支持ETL批处理任务. AnalyticDB PG 6.0 版本大幅提升并发事务处理能力,更好的满足实时数仓场景,同时通过事务锁等优化,完备支持HTAP业务.AnalyticDB PG 6.…
问题导读:1.数据库.数据仓库如何理解?2.数据湖有什么用途?解决什么问题?3.数据仓库的加载链路如何实现?4.Hudi新一代数据湖项目有什么优势? 在近期的 Apache Kylin × Apache Hudi Meetup 直播上,Apache Kylin PMC Chair 史少锋和 Kyligence 解决方案工程师刘永恒就 Hudi + Kylin 的准实时数仓实现进行了介绍与演示.下文是分享现场的回顾. 我的分享主题是<基于 Hudi 和 Kylin 构建准实时.高性能数据仓库>,…
目录 实时数仓(二):DWD层-数据处理 1.数据源 2.用户行为日志 2.1开发环境搭建 1)包结构 2)pom.xml 3)MykafkaUtil.java 4)log4j.properties 2.2 实现功能 1)代码实现 2)部署运行 3.业务数据 3.1 实现功能 3.2 动态分流 1)建配置表:create.sql 2)配置类:TableProcess.java 3)MysqlUtil.java 4)常量类:GmallConfig.java 5)主程序:BaseDBApp.java…
1.概述 Clickhouse是一个开源的列式存储数据库,其主要场景用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告.今天,笔者就为大家介绍如何使用Clickhouse来构建实时数仓,来满足一些实时性要求较高的使用场景. 2.内容 2.1 什么是OLAP场景 在介绍Clickhouse构建实时数仓之前,我们先来了解一下OLAP的使用场景,通常OLAP的使用场景包含如下特征: 绝大多数是读取请求: 数据以相当大的Batch进行更新: 已存储的数据不能随意修改: 对于读取,从…
  Tapdata Cloud 是一款很有「前途」的产品.--Tapdata Cloud 用户 | 一线DBA@某PCB全球百强企业   从首次提出这一概念起,已经 10 年过去了,"工业互联网"仍然是制造业高质量发展的主题.   踩着这阵东风,数字化升级.智能制造.工业信息化等关键词接连冒头,有效利用"数据的力量",成为推进产业升级创新.提升产品质量的重要一环,"制数权"的身价水涨船高.   建立"数据仓库",便是这样的背景…
文 |彭超 瓜子大数据架构师 交流微信 | datapipeline2018 一.为什么选择Kafka   为什么选Kafka?鉴于庞大的数据量,需要将其做成分布式,这时需要将Q里面的数据分到许多机器上进行存储,除此之外还有分布式的计算需求.同时需要支持多语言,如Java.GO.php等,另外还有高可用的需求. 二.Kafka集群   Realtime的Kafka集群通过Mirror Maker将数据全部同步到Analysis的Kafka集群. Realtime的Kafka集群主要负责在线实时读…
大数据时代,一大技术特征是对海量数据采集.存储和分析的多组件解决方案.而其中对来自于传感器.APP的SDK和各类互联网应用的原生日志数据的采集存储则是基本中的基本.本系列文章将从0到1,概述一下搭建基于Kafka.Flume.Zookeeper.HDFS.Hive的海量数据分析系统的框架.核心应用和关键模块. 项目源代码存储于GitHub:源码 系统架构概述 本系列文章所介绍的数据分析系统,定位于一种通用的大数据分析系统,可用于电商.互联网和物联网的实际解决方案中.该应用主要解决从多种多样的互联…
作者 | 元毅 阿里云智能事业群高级开发工程师 导读:当前在 Knative 中已经提供了对 Kafka 事件源的支持,那么如何基于 Kafka 实现消息推送呢?本文作者将以阿里云 Kafka 产品为例,给大家解锁这一新的姿势. 背景 消息队列 for Apache Kafka 是阿里云提供的分布式.高吞吐.可扩展的消息队列服务.消息队列 for Apache Kafka 广泛用于日志收集.监控数据聚合.流式数据处理.在线和离线分析等大数据领域,已成为大数据生态中不可或缺的部分. 结合 Knat…
DataPipeline已经完成了很多优化和提升工作,可以很好地解决当前企业数据集成面临的很多核心难题. 1. 任务的独立性与全局性. 从Kafka设计之初,就遵从从源端到目的的解耦性.下游可以有很多个Consumer,如果不是具有这种解耦性,消费端很难扩展.企业做数据集成任务的时候,需要源端到目的端的协同性,因为企业最终希望把握的是从源端到目的端的数据同步拥有一个可控的周期,并能够持续保持增量同步.在这个过程中,源端和目的端相互独立的话,会带来一个问题,源端和目的端速度不匹配,一快一慢,造成数…
在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeline Manager的概念,主要用于优化Source和Sink的全局化生命周期管理.当任务出现异常时,可以实现对目的端和全局生命周期的管理.例如,处理源端到目的端读取速率不匹配以及暂停等状态的协同. 为了加强系统的健壮性,我们把Connector任务的参数保存在ZooKeeper中,方便任务重启后读…
导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPipeline CTO陈肃分享了DataPipeline是如何基于Kafka Connect框架构建实时数据集成平台的应用实践.以下内容是基于现场录音整理的文字,供大家参考. 什么是数据集成?最简单的应用场景就是:一个数据源,一个数据目的地,数据目的地可以一个数据仓库,把关系型数据库的数据同步到数据仓库…
本篇文章内容来自2016年TOP100summit Microsoft资深产品经理邢国冬的案例分享.编辑:Cynthia 邢国冬(Tony Xing):Microsoft资深产品经理.负责微软应用与服务集团的大数据平台构建,数据产品与服务. 导读:微软的ASG (应用与服务集团)包含Bing,.Office,.Skype.每天产生多达5 PB以上数据,如何构建一个高扩展性的data audit服务来保证这样量级的数据完整性和实时性非常具有挑战性.本文将介绍微软ASG大数据团队如何利用Kafka.…
nakadi 是zalando 开源的一款基于kafka 的event broker ,我们可以方便的使用http 协议进行操作 支持一些特性: stream 操作,我们可以流的方式订阅event event 支持基于json schema 我们可以对于event 进行数据校验,方便的schema 注册 支持oauth .event type 的安全认证,同时也支持黑名单用户以及应用授权 比较全的监控集成 环境准备 docker-compose 文件 说明使用pg 存储基本的元数据,此项目集成了…
实现用例分析 上篇基于Kafka消息驱动最终一致事务(一)介绍BASE的理论,接着我们引入一个实例看如何实现BASE,我们会用图7显示的算法实现BASE.…
基本可用软状态最终一致事务 本用例分两个数据库分别是用户库和交易库,不使用分布式事务,使用基于消息驱动实现基本可用软状态最终一致事务(BASE).现在说明下事务逻辑演化步骤,尊从CAP原则,即分布式系统不能全部确保一致性.可用性.分区容错性,只能三选二.文章里从一致性模式讨论,例子里每次出售物品时,将一行添加到交易表中,并更新买方和卖方的数量. 使用ACID风格的事务这是强一致性事务,SQL将如图所示.…
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题.实现高性能,高可用,可伸缩和最终一致性架构,是大型分布式系统不可缺少的中间件. 本场 Chat 主要内容: Kafka 的架构解读: Kafka 为什么要将 Topic 进行分区: Kafka 高可靠性实现基础解读: Kafka 复制原理和同步方式: Leader 选举机制,及如何确保新选举出的 Leader 是优选: 同步副本 ISR: Kafka 数据可靠性和持久性保证: 深入解读 HW 机制: Kafka…
spark streaming使用Kafka数据源进行数据处理,本文侧重讲述实践使用. 一.基于receiver的方式 在使用receiver的时候,如果receiver和partition分配不当,很容易造成数据倾斜,使个别executor工作繁重,拖累整体处理速度. receiver线程分配和partition的关系: 假如topic A,分配了3个receiver,topic A有5个partition,一个receiver会对应一个线程,partition 0,1,2,3,4会这样分配…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
Uber如何搭建一个基于Kafka的跨数据中心复制平台 原创: 徐宏亮 AI前线 今天…
paip.lucene 4.3 中文语义搜索最佳实践 首先一个问题是要不要使用lucene 自带的分词器...我觉得最好不使用哪自带的分词器.效果还凑火,就是不好控制... 先使用ik,ict,mmsj等分词器进行分词.. 然后使用WhitespaceAnalyzer 建立索引...再使用它进行搜索...注意,建立索引以及搜索使用的Analyzer要一样才行.. 要是使用StandardAnalyzer,不个单字也分割开兰,后期过滤麻烦... 作者Attilax  艾龙,  EMAIL:1466…
paip.mysql fulltext 全文搜索.最佳实践.  作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog.csdn.net/attilax  muysql5.5的只能myisam   能建立fulltext索引了... 5.6.10-log 这个innodb 能建立fulltext索引了... /////////默认不能中文搜索.. 必须先进行分词.然后,保存入库..走ok.. 如果进行汉字查询时,…
基于Raft构建弹性伸缩的存储系统的一些实践 原创 2016-07-18 黄东旭 聊聊架构 最近几年来,越来越多的文章介绍了 Raft 或者 Paxos 这样的分布式一致性算法,但主要集中在算法细节和日志同步方面的应用,但是呢,这些算法的潜力并不仅限于此,基于这样的分布式一致性算法构建一个完整的可弹性伸缩的高可用的大规模存储系统,是一个很新的课题,我结合我们这一年多以来在 TiKV 这样一个大规模分布式数据库的实践上谈谈其中的一些设计和挑战. 本次分享的主要内容是如何使用 Raft 来构建一个可…