MapReduce数据流(二)】的更多相关文章

在上一篇文章中我们讲解了一个基本的MapReduce作业由那些基本组件组成,从高层来看,所有的组件在一起工作时如下图所示: 图4.4高层MapReduce工作流水线 MapReduce的输入一般来自HDFS中的文件,这些文件分布存储在集群内的节点上.运行一个MapReduce程序会在集群的许多节点甚至所有节点上运行mapping任务,每一个mapping任务都是平等的:mappers没有特定“标识物”与其关联.因此,任意的mapper都可以处理任意的输入文件.每一个mapper会加载一些存储在运…
图4.5细节化的Hadoop MapReduce数据流 图4.5展示了流线水中的更多机制.虽然只有2个节点,但相同的流水线可以复制到跨越大量节点的系统上.下去的几个段落会详细讲述MapReduce程序的各个阶段. 1.输入文件: 文件是MapReduce任务的数据的初始存储地.正常情况下,输入文件一般是存在HDFS里.这些文件的格式可以是任意的:我们可以使用基于行的日志文件,也可以使用二进制格式,多行输入记录或其它一些格式.这些文件会很大—数十G或更大. 2. 输入格式:     InputFo…
1 Partitioner分区 1.1 Partitioner分区描述 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,按照手机号码段划分的话,需要把同一手机号码段的数据放到一个文件中:按照省份划分的话,需要把同一省份的数据放到一个文件中:按照性别划分的话,需要把同一性别的数据放到一个文件中.我们知道最终的输出数据是来自于Reducer任务.那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行.Reducer任务的数据来自于Mapper任务,也就说Ma…
MapReduce(二) mapreduce 将Text转化为对象进行处理数据. 根据一来说,将date,classname,name,subject,score变为对象属性 我的数据是:是有重复的. package com.huhu.day02; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparab…
目前CSDN,博客园,简书同步发表中,更多精彩欢迎访问我的gitee pages 目录 MapReduce精通(二) MapReduce框架原理 MapReduce工作流程 InputFormat数据输入 切片与MapTask并行度决定机制 Job提交流程源码和切片源码详解 FileInputFormat切片机制 CombineTextInputFormat切片机制 CombineTextInputFormat案例实操 FileInputFormat实现类 KeyValueTextInputFo…
输入块(InputSplit):一个输入块描述了构成MapReduce程序中单个map任务的一个单元.把一个MapReduce程序应用到一个数据集上,即是指一个作业,会由几个(也可能几百个)任务组成.Map任务可能会读取整个文件,但一般是读取文件的一部分.默认情况下,FileInputFormat及其子类会以64MB(与HDFS的Block默认大小相同,译注:Hadoop建议Split大小与此相同)为基数来拆分文件.你可以在hadoop-site.xml(译注:0.20.*以后是在mapred-…
一.问题定义 我在网上找了些,关于二度人脉算法的实现,大部分无非是通过广度搜索算法来查找,犹豫深度已经明确了2以内:这个算法其实很简单,第一步找到你关注的人:第二步找到这些人关注的人,最后找出第二步结果中出现频率最高的一个或多个人(频率这块没完成),即完成. 但如果有千万级别的用户,那在运算时,就肯定会把这些用户的follow 关系放到内存中,计算的时候依次查找:先说明下我没有明确的诊断对比,这样做的效果一定没 基于hadoop实现的好:只是自己,想用hadoop实现下,最近也在学:若有不足的地…
每一条记录开始是进入到map函数进行处理,处理完了之后立马就入自定义分区函数中对其进行分区,当所有输入数据经过map函数和分区函数处理完之后,就调用自定义二次排序函数对其进行排序. MapReduce处理数据的大概简单流程:首先,MapReduce框架通过getSplit方法实现对原始文件的切片之后,每一个切片对应着一个map task,inputSplit输入到Map函数进行处理,中间结果经过环形缓冲区的 排序,然后分区.自定义二次排序(如果有的话)和合并,再通过shuffle操作将数据传输到…
附录之前总结的一个例子: http://www.cnblogs.com/DreamDrive/p/7398455.html 另外两个有价值的博文: http://www.cnblogs.com/xuxm2007/archive/2011/09/03/2165805.html http://blog.csdn.net/heyutao007/article/details/5890103 一.MR的二次排序的需求说明 在mapreduce操作时,shuffle阶段会多次根据key值排序.但是在shu…
一,背景介绍 在新浪微博.人人网等社交网站上,为了使用户在网络上认识更多的朋友,社交网站往往提供类似“你可能感兴趣的人”.“间接关注推荐”等好友推荐的功能,其中就包含了二度人脉算法. 二,算法实现 原始数据集测试: a b b c a c b d c e e c e f 数据集说明:为关注关系,即a关注b,b关注c和d,所以a的二度人脉应该是d和c,而c已经被a关注,所以应该舍去,自己不能二度人脉是自己,如c关注e,而e又关注c 代码实现,代码用了两个Job实现的 难点:两个job如何先后执行…