通常,我们谈的高斯模糊,都知道其是可以行列分离的算法,现在也有着各种优化算法实现,而且其速度基本是和参数大小无关的.但是,在我们实际的应用中,我们可能会发现,有至少50%以上的场景中,我们并不需要大半径的高斯,反而是微小半径的模糊更有用武之地(比如Canny的预处理.简单去噪等),因此,小半径的高斯是否能进一步加速就值的研究,正因为如此,一些商业软件都提供了类似的功能,比如在halon中,直接的高斯模糊可以用smooth_image实现,但是你在其帮助文档中搜索gauss关键字后,你会发现有以下…
Atitit.java图片图像处理attilax总结 BufferedImage extends java.awt.Image 获取图像像素点 image.getRGB(i, lineIndex); 图片剪辑 /AtiPlatf_cms/src/com/attilax/img/imgx.java cutImage 图片处理 titit 判断判断一张图片是否包含另一张小图片  atitit 图片去噪算法的原理与实践 attilax 总结.docx Atitit. 图像处理jpg图片的压缩 清理垃圾…
[He et al. 2013]文章提出了一种基于L0范数最小化的三角网格去噪算法.该思想最初是由[Xu et al. 2011]提出并应用于图像平滑,假设c为图像像素的颜色向量,▽c为颜色向量的梯度,设置目标函数为:minc |c – c*|2 + |▽c|0,其中|▽c|0为▽c的L0范数,c*为原始图像的颜色向量.通过引入辅助变量δ,优化函数变为:minc,δ |c – c*|2 + β|▽c – δ|2 + λ|δ|0,其中λ用于控制最终图像的平滑程度.优化过程分两步:第一步固定c优化δ…
基于两步法的网格去噪算法顾名思义包含两个步骤:首先对网格表面的法向进行滤波,得到调整后的网格法向信息,然后根据调整后的法向更新顶点坐标位置,下面介绍三篇该类型的文章. [Sun et al. 2007]文章首先介绍了当前法向滤波方法以及顶点坐标更新方法,然后提出自己的法向滤波方法和顶点坐标更新方法. 法向滤波方法: 1.均值滤波(mean filter):ni’ = normalize(Σj∈N(i) Aj·nj / Σj∈N(i) Aj),均值滤波会破坏网格的细节特征. 2.中值滤波(medi…
受图像双边滤波算法的启发,[Fleishman et al. 2003]和[Jones et al. 2003]分别提出了利用双边滤波算法对噪声网格进行光顺去噪的算法,两篇文章都被收录于当年的SIGGRAPH,至今引用超500余次.虽然从今天看两篇文章的去噪效果还不算非常好,但是其中的思想是值得学习的.图像双边滤波算法可以参考http://blog.csdn.net/abcjennifer/article/details/7616663,图像双边滤波器由空间域核与值域核组成,在图像的特征区域,自…
原文:经典算法题每日演练--第六题 协同推荐SlopeOne 算法 相信大家对如下的Category都很熟悉,很多网站都有类似如下的功能,“商品推荐”,"猜你喜欢“,在实体店中我们有导购来为我们服务,在网络上 我们需要同样的一种替代物,如果简简单单的在数据库里面去捞,去比较,几乎是完成不了的,这时我们就需要一种协同推荐算法,来高效的推荐浏览者喜 欢的商品. 一:概念 SlopeOne的思想很简单,就是用均值化的思想来掩盖个体的打分差异,举个例子说明一下: 在这个图中,系统该如何计算“王五“对”电…
阅读须知 本博客涉及到的资源: 正样本:http://download.csdn.net/detail/zhuangxiaobin/7326197 负样本:http://download.csdn.net/detail/zhuangxiaobin/7326205 训练和检测工具:http://download.csdn.net/detail/zhuangxiaobin/7414793 分类器xml文件:http://download.csdn.net/detail/zhuangxiaobin/7…
一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于生物序列的比较的最早期的几个实例之一.该算法是由 Saul B. Needlman和 Christian D. Wunsch 两位科学家于1970年发明的.本算法高效地解决了如何将一个庞大的数学问题分解为一系列小问题,并且从一系列小问题的解决方法重建大问题的解决方法的过程.该算法也被称为优化匹配算法…
Adaboost 算法实例解析 1 Adaboost的原理 1.1 Adaboost基本介绍 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出.Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这 Adaboost 些弱分类器集合起来,构成一个更强的最终分类器(强分类器).其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利…