keras基于卷积网络手写数字识别】的更多相关文章

import time import keras from keras.utils import np_utils start = time.time() (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() rows = 28 cols = 28 CLASSES = 10 x_train = x_train.reshape(x_train.shape[0], rows, cols, 1) x_test =…
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from keras.utils import np_utils np.random.seed(10) # In[2]: from keras.datasets import mnist # In[3]: (x_train_image,y_train_label),(x_test_image,y_test_label…
参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统:win7 - CPU anaconda-Python3-jupyter notebook tersonFlow:1.10.0 Keras:2.2.4 背景: 视频里宝可梦大师提供的部分参数设置不能得到好的结果,这里记录一下后续调参 1-载入数据报错的问题: 载入数据运行时报错:[WinError 1…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果. 数据准备 MNIST 数据集下载 MNIST 数据集可以从 THE MNIST DATABASE of handwritten digits 的网站直接下载. 网址:http://yann.lecun.com/exdb/mnist…
源码和运行结果 cuda:https://github.com/zhxfl/CUDA-CNN C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是99.7%,在几分钟内,CNN的训练就可以达到99.60%左右的准确率. 参数配置 网络的配置使用Config.txt进行配置##之间是注释,代码会自动过滤掉,其他格式参考如下: #Comment# #NON_LINEARITY CAN = NL_SIGMOID , NL_TANH , NL_RELU…
参考了秋风细雨的文章:http://blog.csdn.net/candyforever/article/details/8564746 花了点时间编写出了程序,先看看效果吧. 识别效果大概都能正确. 好了,开始正题: 因为本程序是提取HOG特征,使用SVM进行分类的,所以大概了解下HOG的一些知识,其中我觉得怎么计算图像HOG特征的维度会对程序了解有帮助 关于HOG,我们可以参考: http://gz-ricky.blogbus.com/logs/85326280.html http://bl…
一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi93oN9kXCLdyxOMnRA 密码:79ig 过程如下: 第一步:点击next 第二步:I Agree 第三步:Just ME 第四步:自己选择一个恰当位置放它就好 第五步:建议只选择第二个 第六步:就直接install啦啦啦啦,然后你就可以上手万能库了 b.找到Anaconda prompt…
参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018. 首先在命令行中写入 activate tensorflow和jupyter notebook,运行如下代码.当然,事先准备好MNIST数据集. # coding: utf-8 # In[4]: from keras.datasets import mnist from keras.utils import np_utils import numpy as np np.random.se…
from keras.datasets import mnist from keras.utils import np_utils from plot_image_1 import plot_image_1 from plot_prediction_1 import plot_image_labels_prediction_1 from show_train_history import show_train_history import numpy as np import pandas as…
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这个疑问昨晚研究了下,利用这篇文章来记录下自己的一些心得! 以下这个图片是我随机写的一串数字,我的目标是利用训练好的模型来识别出图片里面的手写数字,开始实战! 2层卷积神经网络的训练: from tensorflow.examples.tutorials.mnist import input_data…