0x00 关于使用C++接口来提取特征,caffe官方提供了一个extract_features.cpp的例程,但是这个文件的输入是blob数据,即使输入层使用的是ImageData,也需要在deploy.prototxt中指定图片的位置,很不方便. 如果想要使用opencv来读取一个图片,然后用caffe训练好的model提取特征,就需要对输入层进行改写.另外官方例程默认的输出是leveldb格式,我们也可以获取float类型的多维特征(数组),这样集成到我们的项目中更灵活. 0x01 首先我…
介绍一种更加灵活的方法,用MemoryData层输入数据,可以直接用opencv接口读入我们的图片再添加的网络中.  第一个问题:仍然是工程建立问题,提示卷积层或其他层没有注册,解决方法与上一篇博客一样.可查看:http://blog.csdn.net/sunshine_in_moon/article/details/50125255  第二个问题:网络配置文件的改写,因为使用MemoryData层. layers{ name: "data" type: MEMORY_DATA //M…
0x00 关于使用C++接口来提取特征,caffe官方提供了一个extract_features.cpp的例程,但是这个文件的输入是blob数据,即使输入层使用的是ImageData,也需要在deploy.prototxt中指定图片的位置,很不方便. 如果想要使用opencv来读取一个图片,然后用caffe训练好的model提取特征,就需要对输入层进行改写.另外官方例程默认的输出是leveldb格式,我们也可以获取float类型的多维特征(数组),这样集成到我们的项目中更灵活. 0x01 首先我…
现在Caffe的Matlab接口 (matcaffe3) 和python接口都非常强大, 可以直接提取任意层的feature map以及parameters, 所以本文仅仅作为参考, 更多最新的信息请参考: http://caffe.berkeleyvision.org/tutorial/interfaces.html 原图…
使用OpenCV可以提分别提取显示一张图片(或者视频)的R,G,B颜色分量.效果如下. 原图: R: G: B: 示例代码如下,貌似很久以前网上找的的,逻辑很清晰,就是把R,G,B三个分量分开,然后显示出来,就不注释了. #include "cv.h" #include "highgui.h" #include <cxcore.h> void main(int argc,char **argv) { IplImage *img=cvLoadImage(&…
论文的caffemodel转化为tensorflow模型过程中越坑无数,最后索性直接用caffe提特征. caffe提取倒数第二层,pool5的输出,fc1000层的输入,2048维的特征 #coding=utf-8 import caffe import os import numpy as np import scipy.io as sio #路径设置 OUTPUT='E:/caffemodel/'#输出txt文件夹 root='E:/caffemodel/' #根目录 deploy=roo…
1. caffe matlab 接口提供了提取feature的脚本,但是由于中间要对这些图像进行RGB ---> BGR 的变换,卧槽,灰度图没有三通道啊?怎么破?从上午就在纠结怎么会跑着跑着程序就报错了,尼玛,坑啊... 如何解决这个问题 ?? ----------------------------------------------------------- 我把灰度图给扔了,谢谢! 2. If I use the color images mixed with gray images t…
Caffe 提供了matlab接口,可以用于提取图像的feature.…
参考博客: http://blog.csdn.net/abc8730866/article/details/52522843 http://blog.csdn.net/lijiancheng0614/article/details/48180331 编译出extract_features.exe模块 在×64.Release模式下编译生成extract_features.exe 将某一层的特征向量生成lmdb文件 在caffe工程的examples下新建一个文件夹,命名为_temp 将examp…
注:原文中的代码是在spark-shell中编写运行的,本人的是在eclipse中编写运行,所以结果输出形式可能会与这本书中的不太一样. 首先将用户数据u.data读入SparkContext中.然后输出第一条数据看看效果.代码例如以下: val sc = new SparkContext("local", "ExtractFeatures") val rawData = sc.textFile("F:\\ScalaWorkSpace\\data\\ml-…
Part1:caffe的ImageData层 ImageData是一个图像输入层,该层的好处是,直接输入原始图像信息就可以导入分析. 在案例中利用ImageData层进行数据转化,得到了一批数据. 但是笔者现在还有几个问题, 这个ImageData只能显示一个batch的图像信息,不能在同一案例循环使用的是吧? L.ImageData之后的数据,可以直接用于框架的输入数据吗?(待尝试) . 一.官方文档中的使用 在案例<Fine-tuning a Pretrained Network for S…
linger博客原创性博文导航 http://blog.csdn.net/lingerlanlan 大学研究游戏外挂技术開始了此博客.断断续续写了些博文. 后来,開始机器学习和深度学习的研究工作,因为喜欢和热爱,业余时间也常常性学习.并写博文总结.因此,博文越来越多.因为博文是依据时间排序的,看起来有点乱,所以在此处写个导航. 搞了个微信号(data_bird),关注数据挖掘.机器学习 UFLDL学习笔记和编程 ufldl学习笔记与编程作业:Linear Regression(线性回归) ufl…
人脸验证算法Joint Bayesian详解及实现(Python版) Tags: JointBayesian DeepLearning Python 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如对代码有兴趣的请移步我的 Github. 如需转载,请附上本文链接,不甚感激!  http://blog.csdn.net/cyh_24/article/details/49059475 Bayesian Face Revis…
▶ 环境准备 1.安装 FFmpeg 音/视频工具 FFmpeg 简易安装文档 2.安装 ffmpeg-python pip3 install ffmpeg-python 3.[可选]安装 opencv-python pip3 install opencv-python 4.[可选]安装 numpy pip3 install numpy ▶ 视频帧提取 准备视频素材 抖音视频素材下载:https://anoyi.com/dy/top 基于视频帧数提取任意一帧 import ffmpeg impo…
win7 配置微软的深度学习caffe   官方下载: https://github.com/Microsoft/caffe 然后 直接修改caffe目录下的windows目录下的项目的props文件配置支持哪些特性,然后直接打开vs的项目编译即可完成,怎一个爽字了得(nuget自动处理依赖问题) (1)注意修改python的绑定为true, (2)matlab的绑定为true, (3)usecudnn为false (4)cuda arch为compute_30 和sm_30(这个根据你自己的显…
如果用公式  y=f(wx+b) 来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项.f是激活函数,有sigmoid.relu等.x就是输入的数据. 数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值. 我们运行代码: deploy=root + 'mnist/deploy.prototxt' #deploy文件 caffe_model=root + 'mnist/lenet_iter_9380.ca…
Caffe+CUDA7.5+CuDNNv3+OpenCV3.0+Ubuntu14.04  配置参考文献 ---- Wang Xiao Warning: Please make sure the cuda is installed correctly, before you reboot your PC, or  you may stucked and can not open your system. Check in your terminal: nvidia-smi If it shown…
Caffe Python特征抽取 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ Caffe大家一般用到的深度学习平台都是这个,关于Caffe的训练通常一般都可以通过一些命令来执行,但是在deploy阶段,如果是做实际的工程,那么C++接口用得会相对比较多.但是Caffe是支持Python和Matlab接口的,所以用Python来做一些相关的特征的处理以及额外的任务比较方便 这里我主要是结合了Caffe官网的…
Caffe Python特征抽取 转载 http://www.cnblogs.com/louyihang-loves-baiyan/ Caffe大家一般用到的深度学习平台都是这个,关于Caffe的训练通常一般都可以通过一些命令来执行,但是在deploy阶段,如果是做实际的工程,那么C++接口用得会相对比较多.但是Caffe是支持Python和Matlab接口的,所以用Python来做一些相关的特征的处理以及额外的任务比较方便 这里我主要是结合了Caffe官网的例程,当然它给的例程是参照的Ipyt…
实际上Scala没有操作符, 只是以操作符的格式使用方法. 操作符的优先级取决于第一个字符(除了赋值操作符), 而结合性取决于最后一个字符 Scala的操作符命名更加灵活:) 操作符 中置操作符(Infix) a 操作符 b 上述操作符代表一个带有两个参数的方法(一个隐式参数和一个显示参数) 1 to 10 即 1.to(10) Range 1 -> 10 即 1.->(10) 对偶操作符(1, 10) 在自己的类中定义操作符很简单, 以你自己想要做操作符的标识符来定义一个方法就好了. cla…
Caffe + CUDA8.0 + CuDNNv5.1 + OpenCV3.1 + Ubuntu14.04  配置参考文献 ---- Wang Xiao  Anhui University  CVPR Group   2017-05-27 Warning: Please make sure the cuda is installed correctly, before you reboot your PC, or  you may stucked and can not open your sy…
需要的文件为:deploy.prototxt caffemodel net = caffe.Net(deploy.txt,caffe_model,caffe.TEST)具体代码: import caffeimport numpy as nproot='/home/xxx/' #根目录deploy=root + 'mnist/deploy.prototxt' #deploy文件caffe_model=root + 'mnist/lenet_iter_9380.caffemodel' #训练好的 c…
Lenet5的应用和原理.实现 ----------------------------------------------ubuntu16.04.2---------------------------------------------------------- ubuntu16.04.2: #获取数据 cd data/mnist sh get_mnist.sh #转换格式 sh examples/mnist/create_mnist.sh# 训练模型 sh examples/mnist/t…
由于项目需要将PDF文档当中的图片转换成图片,所以参考了这篇文章https://blog.csdn.net/qq_15969343/article/details/81673302后项目得以解决. 1.安装第三方类库pymupdf:pip install pymupdf 2.安装完成后直接上代码,代码如下: import fitz import time import re import os def pdf2pic(path, pic_path): t0 = time.clock() # 生成…
1. 关于特征提取 0x1:什么是特征提取 特征提取研究的主要问题是,如何在数据集未明确表示结果的前提下,从中提取出重要的潜在特征来.和无监督聚类一样,特征提取算法的目的不是为了预测,而是要尝试对数据进行特征识别,以此得到隐藏在数据背后的深层次意义. 回想一下聚类算法的基本概念,聚类算法将数据集中的每一行数据分别分配给了某个组(group)或某个点(point),每一项数据都精确对应于一个组,这个组代表了组内成员的平均水平. 特征提取是这种聚类思想更为一般的表现形式,它会尝试从数据集中寻找新的数…
自编码(Autoencoder)介绍 Autoencoder是一种无监督的学习算法,将输入信息进行压缩,提取出数据中最具代表性的信息.其目的是在保证重要特征不丢失的情况下,降低输入信息的维度,减小神经网络的处理负担.简单来说就是提取输入信息的特征.类似于主成分分析(Principal Components Analysis,PAC) 对于输入信息X,通过神经网络对其进行压缩,提取出数据的重要特征,然后将其解压得到数据Y,然后通过对比X与Y求出预测误差进行反向传递,逐步提升自编码的准确性.训练完成…
模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取手写数字图片特征,主要想看如何提取特征的请直接看源代码部分的94行左右,只要对tensorflow有一点了解就可以看懂.在最后会有完整的源代码.处理后数据的分享链接.转载请保留原文链接,谢谢. UCI手写数字的数据集 源数据下载:http://oddmqitza.bkt.clouddn.com/ar…
ORBSLAM2中ORB特征提取的特点 ORBSLAM2中通过对OpenCV中的ORB特征点提取类进行修改,对图像进行分块提取,而后划分节点,使得每个节点中保存的特征点性能是该节点所有特征点中最好的. 可能按照上面说的方式,大家不太能理解. 这么说吧.将铺满苹果的桌子进行画格子,然后每个格子中就会有不同数量的苹果,在每个格子中选出最好吃的苹果,格子中其他的苹果全部扔掉.(虽然有点可惜,但是大局为重嘛),那么原先摆满苹果的桌子(如图1所示),现在就剩下每个格子一个苹果的桌子,尽管苹果少了很多,但是…
国外的文献汇总: <Network Traffic Classification via Neural Networks>使用的是全连接网络,传统机器学习特征工程的技术.top10特征如下: List of Attributes Port number server Minimum segment size client→server First quartile of number of control bytes in each packet client→server Maximum n…
本文转载请注明出处 —— polobymulberry-博客园 0x00 - 前言 在[AR实验室]mulberryAR : ORBSLAM2+VVSION末尾提及了iPhone5s真机测试结果,其中ExtractORB函数,也就是提取图像的ORB特征这一块耗时很可观.所以这也是目前需要优化的重中之重.此处,我使用[AR实验室]mulberryAR :添加连续图像作为输入中添加的连续图像作为输入.这样的好处有两个,一个就是保证输入一致,那么单线程提取特征和并行提取特征两种方法优化对比就比较有可信…