解读Batch Normalization】的更多相关文章

原文转自:http://blog.csdn.net/shuzfan/article/details/50723877 本次所讲的内容为Batch Normalization,简称BN,来源于<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>,是一篇很好的paper. 1-Motivation 作者认为:网络训练过程中参数不断改变导致后续每一层输入的分布也发生…
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network training by reducing internal covariate shift 和下面的这些解读之后,还有感觉有些不明白.比如, 是怎么推导出来的,我怎么就是没搞懂呢? 1.论文翻译:论文笔记-Batch Normalization 2.博客专家 黄锦池 的解读:深度学习(二十九)Batch…
前言 Face book AI research(FAIR)吴育昕-何恺明联合推出重磅新作Group Normalization(GN),提出使用Group Normalization 替代深度学习里程碑式的工作Batch normalization,本文将从以下三个方面为读者详细解读此篇文章: What's wrong with BN ? How GN work ? Why GN work ? Group Normalizition是什么 一句话概括,Group Normalization(G…
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看到,Deep Learning越来越像Bayesian Learning的一个子集,Deep Learni…
课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ______________________________________________________________________________________________________________________________________________________________…
Batch Normalization Ioffe 和 Szegedy 在2015年<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>论文中提出此方法来减缓网络参数初始化的难处. Batch Norm优点 减轻过拟合 改善梯度传播(权重不会过高或过低) 容许较高的学习率,能够提高训练速度. 减轻对初始化权重的强依赖 作为一种正则化的方式,在某种程度上减少对d…
一.BN 的作用 1.具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2.具有提高网络泛化能力的特性:不用去理会过拟合中drop out.L2正则项参数的选择问题 3.不需要使用使用局部响应归一化层,BN本身就是一个归一化网络层 4.可以把训练数据彻底打乱 神经网络训练开始前,都要对输入数据做一个归一化处理,原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低:另外一方面,一旦每批训练数据的分布各不相同(bat…
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变我们就需要使用更小的learning rate去训练,这一现象被成为internal covariate shift,Batch Normalization能够很好的解决这一问题.目前该算法已经被广泛应用在深度学习模型中,该算法的强大至于在于: 可以选择一…
BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中"梯度弥散"的问题,从而使得训练深层网络模型更加容易和稳定.所以目前BN已经成为几乎所有卷积神经网络的标配技巧了. 从字面意思看来Batch Normalization(简称BN)就是对每一批数据进行归一化,确实如此,对于训练中某一个batch的数据{x1,x2,...,xn},注意这个数据是可以输入也可以是网络中间的某一层输出.在BN出现之前,…
一. Batch Normalization 对于深度神经网络,训练起来有时很难拟合,可以使用更先进的优化算法,例如:SGD+momentum.RMSProp.Adam等算法.另一种策略则是高改变网络的结构,使其更加容易训练.Batch Normalization就是这个思想. 为什么要做Normalization? 神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低:另外一方面,一旦每批训练数据的分布各不相同(batch梯度下降),那么网络…