【DeepLearning】GoogLeNet】的更多相关文章

InceptionV1 论文原文:Going deeper with convolutions    中英文对照 InceptionBN 论文原文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift   中英文对照 InceptionV2/V3 论文原文:Rethinking the Inception Architecture for Computer Visi…
[论文标题]Convolutional neural network architecture for geometric matching (2017CVPR) [论文作者]Ignacio Rocco ,Relja Arandjelovi´,Josef Sivic [论文链接]Paper (15-pages // Double column) [Abstract] We address the problem of determining correspondences between two…
手写字体识别模型LeNet5诞生于1994年,是最早的卷积神经网络之一.原文地址为Gradient-Based Learning Applied to Document Recognition,感谢网络中各博主的讲解,尤其是该博客,帮助我的理解,感谢. Model详解 C1 6@28×28 S2 6@14×14 C3 16@10×10 S4 16@5×5 C5 120 F6  84 Output  10 Model概览 代码复现 下图就是我们很熟悉的LeNet-5的结构图,LeNet5由7层CN…
终于有了2个月的空闲时间,给自己消化沉淀,希望别有太多的杂事打扰.在很多课程中,我都学过卷积.池化.dropout等基本内容,但目前在脑海中还都是零散的概念,缺乏整体性框架,本系列博客就希望进行一定的归纳和梳理,谋求一个更清晰的思路. ## Outline 卷积 tensorflow-conv 池化 tensorflow-pooling 反向传播 梯度消散和梯度爆炸 ## Notes [卷积(Convolution)] 卷积的目的就是从原始数据中提取出特征,过程是利用卷积核(kernel)按照下…
在前文中,我们介绍了LeNet的相关细节,它是由两个卷积层.两个池化层以及两个全链接层组成.卷积都是5*5的模板,stride =1,池化为MAX.整体来说它有三大特点:局部感受野,权值共享和池化.2012年ALex发布了AlexNet,他比LeNet5更深,而且可以学习更复杂的图像高维特征.接下来,我们就将一起学习AlexNet模型. 论文原文: ImageNet Classification with Deep Convolutional Neural Networks 论文翻译:AlexN…
目录 0. 论文链接 1. 概述 2. inception 3. GoogleNet 参考链接 @ 0. 论文链接 1. 概述   GoogLeNet是谷歌团队提出的一种大体保持计算资源不变的前提下,通过精妙的设计来增加网络的深度和宽度,基于Hebbian法则和多尺度处理来进行设计,在ILSVRC2014中获得了分类和检测第一的好成绩.   通过实验,可以发现神经网络的效果可以通过网络更深.更宽来提升.但也有两个很明显的问题:过拟合和极大的增加了计算量,作者想通过增加网络的稀疏性的同时加深与加宽…
优化算法 1 GD/SGD/mini-batch GD GD:Gradient Descent,就是传统意义上的梯度下降,也叫batch GD. SGD:随机梯度下降.一次只随机选择一个样本进行训练和梯度更新. mini-batch GD:小批量梯度下降.GD训练的每次迭代一定是向着最优方向前进,但SGD和mini-batch GD不一定,可能会"震荡".把所有样本一次放进网络,占用太多内存,甚至内存容纳不下如此大的数据量,因此可以分批次训练.可见,SGD是mini-batch GD的…
本文为转载,作者:Microstrong0305 来源:CSDN 原文:https://blog.csdn.net/program_developer/article/details/80737724 1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象.在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预…
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels) % numClasses - the number of classes % inputSize - the size N of the input vector % la…
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294W Convolutional Neural Networks Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % convolutional n…
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with Sparse Autoencoders sparseAutoencoderLinearCost.m function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ... lam…
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks for digit classification stackedAEPredict.m function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data) % stackedAEPre…
Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data) % theta: trained weights from the autoencoder % visibleSize: the number of…
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%================================================================ %% Step 0a: Load data % Here we provide the code to load natural image data into x. % x will be a * matrix, where…
Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%================================================================ %% Step : Load data % We have provided the code to load data from pcaData.txt into x. % x * matrix, where the kth column…
Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Autoencoder中的sampleIMAGES.m进行归一化, 将使得训练得到的可视化权值如下图: 更改train.m的参数设置 visibleSize = *; % number of input units hiddenSize = ; % number of hidden units spar…
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logistic函数,值域(0,1), 如果训练样本每个像素点没有进行归一化,那将无法进行自编码. 2.训练阶段,向量化实现比for循环实现快十倍. 3.最后产生的图片阵列是将W1权值矩阵的转置,每一列作为一张图片. 第i列其实就是最大可能激活第i个隐藏节点的图片xi,再乘以常数因子C(其中C就是W1第i行元素…
(一)Autoencoders and Sparsity章节公式错误: s2 应为 s3. 意为从第2层(隐藏层)i节点到输出层j节点的误差加权和. (二)Support functions for loading MNIST in Matlab文件名错误 % Change the filenames if you've saved the files under different names % On some platforms, the files might be saved as %…
http://blog.topspeedsnail.com/archives/10897 两个双卷积池化 + dropout + 2个全链接 + softmax…
Deep Learning: A Practitioner's Approach http://www.amazon.com/Deep-Learning-Practitioners-Adam-Gibson/dp/1491914254/ref=sr_1_1?ie=UTF8&qid=1430704761&sr=8-1&keywords=deep+learning…
记录下,有空研究. http://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml http://nlp.stanford.edu/courses/NAACL2013/ Fast and Robust Neural Network Joint Models for Statistical Machine Translation ACL2014的论文列表 http://blog.sina.com.cn/s…
转自深度学习知识框架,小象牛逼! 图片来自小象学院公开课,下面直接解释几条线 神经网络 线性回归 (+ 非线性激励) → 神经网络 有线性映射关系的数据,找到映射关系,非常简单,只能描述简单的映射关系 大部分关系是非线性的,所以改进方法就是加一个非线性激励,某种程度是一个 NORMALIZE,但是是非线性的,对参数有更强的描述能力 +非线性激励,描述稍微复杂的映射关系,形成神经网络 神经网络输入是 1 维信息,普通网络之间进行的是代数运算,然后经过非线性激励,形成新的神经网络 RNN 神经网络…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
今天找到一个比较好的deep learning的教材:Neural Networks and Deep Learning 对神经网络有详细的讲解,鉴于自己青年痴呆,还是总结下笔记吧=.= Perceptron感知器 Perceptron的输入的一组binary变量xi,对这些binary变量求出加权和后,如果这个和大于某个阈值threshold,就输出1:否则输出0. 所以perceptron的输入输出都是binary的,我们可以把一个perceptron的输入看成一组“evidences”(证…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju…
文章来源:企鹅号 - 仲耀晖的碎碎念 tzattack Studio presents 来源:Google AI Blog 编译:仲耀晖 ------------------------------------------------------------------------------------------------------- [导读]使用机器学习去探索神经网络架构 谷歌已经成功将深度学习模型应用到很多应用之中,如图像识别.语音识别及机器翻译.通常情况下,机器学习模型都是由工程师…
[导读]TensorFlow 在 2015 年年底一出现就受到了极大的关注,经过一年多的发展,已经成为了在机器学习.深度学习项目中最受欢迎的框架之一.自发布以来,TensorFlow 不断在完善并增加新功能,直到在这次大会上发布了稳定版本的 TensorFlow V1.0.这次是谷歌第一次举办的TensorFlow开发者和爱好者大会,我们从主题演讲.有趣应用.技术生态.移动端和嵌入式应用多方面总结这次大会上的Submit,希望能对TensorFlow开发者有所帮助. TensorFlow:面向大…
GitHub 上 57 款最流行的开源深度学习项目[转] 2017-02-19 20:09 334人阅读 评论(0) 收藏 举报 分类: deeplearning(28) from: https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github 本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名).最后更新:2016.08.09 1.TensorFlow Star…