题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值 还复习了欧拉函数以及线性筛逆元 考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[j]是区间内所有出现过的质数) 那么考虑找出区间内所有出现过的质数,这思路和HH的项链是不是很像?? 由于此题强制在线,所以把树状数组替换成了主席树而已 原来我以前写的主席树一直都是错的......还好推出了我原来错误代码的反例 在继承上一个树的信息时,注意不要破坏现在的树 #include <cstd…
题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10610^610​6​​ + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans = 0) 输入格式 第一行,两个正整数,N,Q,表示序列的长度和询问的个数…
把我写吐了 太弱了 首先按照欧拉函数性质 我只需要统计区间不同质数个数就好了 一眼主席树 其次我被卡了分解质因数这里 可以通过质数筛时就建边解决 不够灵性啊,不知道如何改 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1e6+1000; const int H = 5e4+5; const int M = H*100; const int mod = 1e6+777; int i…
Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freopen(s".in","r",stdin) #define mod 1000777 using namespace std; struct Tree { int tot; int lson[maxn*270],rson[maxn*270]; ll mul[maxn*270]…
dC Loves Number Theory 题目大意:dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans = 0) 数据范围:1<=N<=50000…
根据欧拉函数的定义式可知,可以先算出a[l]*a[l+1]*...*a[r]的值,然后枚举所有存在的质因子*(p-1)/p. 发现这里区间中一个质因子只要计算一次,所以指计算“上一个同色点在区间外”的数.记录pre就是二维数点问题了,套路地用主席树即可. 被卡常.别的OJ过了BZOJ过不了,优化常数后别的OJ速度快一倍BZOJ还是过不了. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l);…
[BZOJ4026]dC Loves Number Theory Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.    给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans =…
题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.  给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans = 0)  输入 第一行,两个正整数,N,Q,表示序列的长度和询问的个数. 第二行有N…
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质因数,由于不同的质因数只算一次,所以我们只关心每个质数它最后一次出现的位置,开一棵线段树维护一下每个位置的质数,加入新的质数时,先把之前的删掉,再加新的 现在强制在线,可以开可持久化线段树维护一下 #include<bits/stdc++.h> #define REP(i,a,b) for(int…
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 题解一(自己yy) phi[i]表示与x互质的数的个数 即gcd(x,y)=1 1<=y<x ∴对于x,y 若a为素数 则gcd(xa,…
3772: 精神污染 Time Limit: 10 Sec  Memory Limit: 64 MB Description 兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位是森林和山地,与拥有关西机场的大阪府比邻而居,是关西地区面积最大的县,是集经济和文化于一体的一大地区,是日本西部门户,海陆空交通设施发达.濑户内海沿岸气候温暖,多晴天,有日本少见的贸易良港神户港所在的神户市和曾是豪族城邑“城下町”的姬路市等大城市,还有以疗养地而闻名的六甲山地等. 兵库县官方也大力发…
Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯 竭的水题资源.    给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的 φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 +  777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时, lastans = 0)  Input 第一行,两个正整数,N,Q,表示序列…
Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)=p^k \times \frac{p-1}{p},k>0\\ \varphi(ab)=\varphi(a)\varphi(b),gcd(a,b)=1\\ \dots \] 有上面三个就够了. 要求 \[ \varphi(\prod a_i) \] 可以考虑把\(\prod a_i\)拆成 \[ \p…
题意: 给出一个数,给出的形式是其分解质因数后,对应的质因数pi及其次数qi,问对这个数不停求phi,直至这个数变成1,需要多少次.(多组数据) 范围:pi <= 1e5,qi <= 1e9 分析: 当x > 2时,phi[x]均为偶数.而每次求phi之后,2的次数只会减一,然后其他的质因数分解出多个2,因此数x分解得到的2的个数就是答案了. 如果一开始不存在质因数2,那么需要多进行一次phi操作. 程序: #include <cstdio> #include <cst…
BZOJ_4026_dC Loves Number Theory _主席树+欧拉函数 Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯 竭的水题资源.    给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的 φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 +  777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,…
poj 2104 K-th Number(主席树) 主席树就是持久化的线段树,添加的时候,每更新了一个节点的线段树都被保存下来了. 查询区间[L,R]操作的时候,只需要用第R棵树减去第L-1棵树就是区间[L,R]中增加的元素对应的树,然后查询这棵两棵树的差值对应的树就可以达到我们的目的. 每增加一个节点,必然有一条边被改变,那条边上的所有节点都会被改变.除这条边之外的其它节点用的是上一棵树的. K-th Number Time Limit: 20000MS   Memory Limit: 655…
3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 755  Solved: 432[Submit][Status][Discuss] Description 在一片美丽的大陆上有100000个国家,记为1到100000.这里经济发达,有数不尽的账房,并且每个国家有一个银行.某大公司的领袖在这100000个银行开户时都存了3大洋,他惜财如命,因此会不时地派小弟GFS清点一些银行的存款或者让GFS改变某个银行的存款.该村子在财产上的求…
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和.   注意到操作3,询问x到根的路径之间点权和,容易发现这就是欧拉序列中的前缀和. 所以按照树的欧拉序列建线段树,然后操作1就变成单点修改,操作2,就变成了区间内某些点+a,某些点-a,也容易用tag…
题面 传送门 思路 这题目是真的难读......阅读理解题啊...... 但是理解了以后就发现,题目等价于: 给你一个区间,支持单点修改,以及查询一段区间的乘积的欧拉函数值,这个答案对19961993取模 这里是欧拉函数的原因显然,题目中的那个不相冲实际上就是扩展欧几里得里面的那个定理,要满足不相冲(也就是方程有解),$product$和$number$必须互质 序列当中,每个元素大小不超过1e6,质因数都是前60个 那么我们显然可以开一棵线段树来维护这个区间乘积,但是怎么处理欧拉函数呢?$O(…
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <cmath> #include <map> using namespace std; typedef long long LL; ; const int INF…
传送门:Bi-shoe and Phi-shoe 题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和. 分析:先预处理出1~1e6的欧拉函数,然后建立一颗线段树维护最大值,对于每个n询问大于等于n的最左边下标. #pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cstring> #include <…
这题我在考场上也是想出了正解的……但是没调出来. 题目链接:CF原网 题目大意:给一个长度为 $n$ 的序列 $a$,$q$ 个操作:区间乘 $x$,求区间乘积的欧拉函数模 $10^9+7$ 的值. $1\le n\le 4\times 10^5,1\le q\le 2\times 10^5,1\le a_i,x\le 300$.时限 5.5s,空限 256MB. 明显线段树. 有一个想法是维护区间积的欧拉函数,但是这样时间复杂度和代码复杂度都很高…… 我的做法是维护区间积.而欧拉函数,就是看看…
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1. 将a[l,r]的数字乘以x(x<=300) 2. 求\(\varphi(\prod_{i=l}^ra[i])\)对1e9+7取模 题解 欧拉函数性质 假如\(p\)是一个质数,\(\varphi(p)=p-1\),\(\varphi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}…
[bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持单点修改,查询一段区间的积的欧拉函数 mod 19961993(是一个质数). 线段树维护区间积x,bitset b[i]记录第i个素数是否存在. 预处理inv[i]=(p[i]-1)/p[i] mod 19961993 ans=x*inv[i] (b[i]==1) /* http://www.cn…
ACM训练联盟周赛 这一场有几个数据结构的题,但是自己太菜,不会树套树,带插入的区间第K小-替罪羊套函数式线段树, 先立个flag,BZOJ3065: 带插入区间K小值 计蒜客 Zeratul与Xor 赛后知道这是个01字典树的题目(嘤嘤嘤???) 这一场写了两道(具体来说就一道)就开溜了,但是计蒜客上这个比赛貌似没有赛后补题,但是有差不多的题目,所以去补那些题就可以了. 有题库链接,可以补题了. G. 算个欧拉函数给大家助助兴 这个题和上一场的 F.Divisions,其实就是一样的题目,代码…
AC通道 要点 欧拉函数对于素数有一些性质,考虑将输入数据唯一分解后进行素数下的处理. 对于素数\(p\)有:\(\phi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}{p}\),因此将\(a_i\)唯一分解后有:\(\phi(\prod_{i=l}^ra_i)=\prod_{i=l}^ra_i*\prod_{p\ \in P}\frac{p-1}{p}\),其中\(P\)是\([l,r]\)内的\(a_i\)分解后的素数集合. 这样转化公式以后,就只需线段树维护一下区间乘…
题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ \begin{aligned} \phi(x)&=\phi(\prod\limits_{i=1}^{n}p_i^{c_i})&\\ &=\prod\limits_{i=1}^{n}\phi(p_i^{c_i})&\\ &=\prod\limits_{i=1}^{n}p_…
HYSBZ - 3813奇数国 中文题,巨苟题,巨无敌苟!!首先是关于不相冲数,也就是互质数的处理,欧拉函数是可以求出互质数,但是这里的product非常大,最小都2100000,这是不可能实现的.所以我们要求互质数的话,得用到所有金额都用60个素数表示的这个条件.也就是x=p1a1xp2a2x...p60a60表示,pi是第i个素数,ai是对应的指数,这就变成了互质素求欧拉函数,可以先了解一下欧拉函数,引用一下境外大佬的博客欧拉函数的讲解.我们需要用到这一条 p为质数 1. phi(p)=p-…
调了半天,写线段树老是写炸 /* 两个操作 1.区间乘法 2.区间乘积询问欧拉函数 欧拉函数计算公式 phi(mul(ai))=mul(ai) * (p1-1)/p1 * (p2-1)/p2 * .. * (pk-1)/pk 因为只有300以内的质数(62个)用一个long long来状态压缩 因此线段树结点维护住区间的质数状态集合S,区间的乘积 操作1 [l,r] x:把x质因数分解,然后更新S,然后再更新乘积, 操作2 [l,r]:询问到区间的状态集合S,区间的乘积,再求逆元进行除法 先把6…
A. 神炎皇 很好的一道题,可能第一次在考场上遇到欧拉函数 题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子, 则称为神奇的数对.问这样的数对共有个? 首先式子同时除一个$gcd(a,b)$,那么设$d=gcd(a,b)$,则$a=A/d,b=B/d$, 所以因为$a$,$b$,中已经将因子全部提出,所以$a\times b$与$a+b$是互质的 然后设$k$为$d/(a+b)$,显然$k\times (a+b)\time…