Naive Bayes Algorithm And Laplace Smoothing】的更多相关文章

朴素贝叶斯算法(Naive Bayes)适用于在Training Set中,输入X和输出Y都是离散型的情况.如果输入X为连续,输出Y为离散,我们考虑使用逻辑回归(Logistic Regression)或者GDA(Gaussian Discriminant Algorithm). 试想,当我们拿到一个全新的输入X,求解输出Y的分类问题时,相当于,我们要求解概率p(Y|X)这里的X和Y都是向量,我们要根据p(Y|X)的结果,找出可能性最大的那个y值,进行输出.举个经典的垃圾邮件(Spam)分类例子…
6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation you’ve got into: You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importanc…
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在这里,我们使用一份皮马印第安女性的医学数据,用来预测其是否会得糖尿病.文件一共有768个样本,我们先剔除缺失值,然后选出20%的样本作为测试样本. 文件下载地址:https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-d…
朴素贝叶斯的核心基础理论就是贝叶斯理论和条件独立性假设,在文本数据分析中应用比较成功.朴素贝叶斯分类器实现起来非常简单,虽然其性能经常会被支持向量机等技术超越,但有时也能发挥出惊人的效果.所以,在将朴素贝叶斯排除前,最好先试试,大家常将其作为一个比较的基准线.本文会结合垃圾邮件分来来详解朴素贝叶斯,紧跟其后的是朴素贝叶斯的两种变形.文章整体划分为三个部分,1)Bernoulli型朴素贝叶斯:2)Laplace平滑:3)多项分布型朴素贝叶斯模型:4)朴素贝叶斯模型在连续型数据中的应用. Berno…
对于给定的训练数据集,朴素贝叶斯法首先基于iid假设学习输入/输出的联合分布:然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y. 一.目标 设输入空间是n维向量的集合,输出空间为类标记集合= {c1, c2, ..., ck}.X是定义在上的随机变量,Y是定义在上的随机变量.P(X, Y)是X和Y的联合概率分布.训练数据集 T = {(x1, y1), (x2, y2), ..., (xN, yN)}由P(X, Y)独立同分布产生. 朴素贝叶斯法的学习目标是习得联合概率分布…
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值.某个词对文章的重要性越高,它的TF-IDF值就越大. (1) 出现次数最多的词是----"的"."是"."在"----这一类最常用的词.它们…
生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患…
    朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y),然后求得后验概率P(X|Y).具体来说,利用训练数据学习P(X|Y)和p(Y)的估计,得到联合概率分布:     概率估计可以是极大似然估计,或者贝叶斯估计.     假设输入 X 为n维的向量集合,输出 Y 为类别,X 和 Y 都是随机变量.P(X,Y)是X和Y的联合概率分布,训练数据集为:…
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/60140664.在这里,我按自己的理解再整理一遍. 在机器学习中,我们有时需要解决分类问题.也就是说,给定一个样本的特征值(feature1,feature2,...feauren),我们想知道该样本属于哪个分类标签(label1,label2,...labeln).即:我们想要知道该样本各个标签的条件概…
1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为p(A|B),事件A和事件B同一时候发生的概率是p(AB).则有 p(AB)=p(A)p(B|A)=p(B)p(A|B)(1) 依据式(1)能够推出贝叶斯定理为 p(B|A)=p(B)p(A|B)p(A)(2) 给定一个全集{B1,B1,-,Bn},当中Bi与Bj是不相交的,即BiBj=∅.则依据全…