完全图中选出不同构的简单图有多少个 上题简化版,只有两种颜色....直接copy就行了 太诡异了,刚才电脑上多了一个不动的鼠标指针,然后打开显卡管理界面就没了 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; ,P=; typedef long long ll; inline…
题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b图一一对应. 题解 这个题是学习了Polya定理和群论以后的练手题,但是推了好久并没有推出来....真的是太难辣... 首先我先说一下我错误的想法: 很容易就把这个题转化成了给\(K_n\)的完全图上的边进行二着色的问题,然后,由于在组合数学课程中经常接触到多边形着色,所以我就把这个题错误的转化成了…
把连边和不连边看成黑白染色,然后就变成了 https://www.cnblogs.com/lokiii/p/10055629.html 这篇讲得好!https://blog.csdn.net/wzq_qwq/article/details/48035455 #include<iostream> #include<cstdio> using namespace std; const int N=65,mod=997; int n,m=2,fac[N],ans,a[N]; int gc…
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b图一一对应. Solution 转化模型:给边 \(0/1\) 染色,如果为 \(1\) 则代表选择,求方案数 考虑一下这个题的置换实际上是边置换,而把边置换用到的节点集合拿出来,发现这些点集合也可以是点置换 于是我们想到用把边置换按照点置换归类 于是复杂度就从边数降到点数了,枚举点置…
题意:两个图AB同构:把A的顶点重新编号后与B一模一样.求n个顶点的图一共有多少个?(同构的算一种) 思路:边有n*(n-1)/2,这些边可以有可以没有,所以等同于边的颜色有两种.然后将n划分成循环节的和,n=L1+L2+……+Lm.现在需要把点置换映射到边置换.两个边在一个点循环节(大小L)时边置换循环节为L/2,否则为Gcd(L1,L2).然后就是计算(L1,L2,……,Lm)这种划分的个数,设m个循环有t种数字,每种数字个数p1,p2,……,pt,那么划分个数为:n!/(L1*L2……*L…
由于有很多本质相同的重复置换,我们先枚举各种长度的点循环分别有多少个,这个暴搜的复杂度不大,n=53时也只有3e5左右.对于每种搜索方案可以轻易求出它所代表的置换具体有多少个. 但我们搜索的是点置换组成的循环,要求的是边置换组成的循环.现在问题就是对于每种搜索方案,求出有多少个边循环. 首先,如果一条边的两个端点属于同一点循环,另一条边的端点属于两个不同点循环,那么显然这两条边不可能属于同一边循环. 对于一个长度为L的点循环,观察发现所有两个端点都属于这个点循环的边构成了L/2个边循环. 对于两…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 591  Solved: 388[Submit][Status][Discuss] Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经…
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对于任意一个置换求不动点数量. 首先边存在或者不存在太麻烦了,我们假装所有边都已经存在,出现过的边和不存在的边用两种不同的颜色染色即可.这样子我们就假装所有的边都出现了,也就是一个完全图. 显然循环是对于点而论的,但是这题同构是对于边而论的.那么我们对于一个点的循环,考虑它的两个顶点.这两个顶点只有两…
题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得两张图对应的边的颜色是一样的,我们就称这两张有色图是同构的. 对于计算所有顶点数为 \(n\) ,颜色种类不超过 \(m\) 的图,最多有几张是两两不同构的图. 数据范围 \(n \le 53, 1 \le m \le 1000\) 题解 神仙题qwq 我们考虑对于点置换与其对应的边置换的关系: 对…
分析 三倍经验题,本文以[BZOJ1478][SGU282]Isomorphism为例展开叙述,主体思路与另外两题大(wan)致(quan)相(yi)同(zhi). 这可能是博主目前写过最长也是最认真的题解了. 题目中规定"若两个已染色的图,其中一个图可以通过结点重新编号而与另一个图完全相同, 就称这两个染色方案相同",说明这个置换群是定义在点上的,而染色方案是定义在边上的.把边的染色方案转化为点的染色方案不太现实,所以说我们可以考虑如何将点的置换转化为边的置换. 一个显然的结论是点的…
群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G,b\in G\),那么有 \(a\times b\in G\) 2. 结合律 \(a\times (b\times c)=(a\times b)\times c\) 似乎这个东西没有什么用蛤? 3. 单位元 存在一个元素 \(e\in G\),使得任意 \(a\in G\) 有 \(a\times…
polya的精髓就在与对循环节的寻找,其中常遇到的问题就是项链染色类问题. 当项链旋转时有n种置换,循环节的个数分别是gcd(n, i); 当项链翻转时有n种置换,其中当项链珠子数位奇数时,循环节的个数是n/2+1 当项链珠子数是偶数个时,当翻转线穿过珠子时,循环节个数为n/2+1,否则为n/2; 1.poj 1286: 题目大意:用三种颜色对珠子数不超过24的项链染色,问有多少种染色情况. 这道题是最基本的polya定理考察,只要带入公式即可 #include<iostream> #incl…
传送门 思路 很明显的一个思路:先搞出有多少种珠子,再求有多少种项链. 珠子 考虑这个式子: \[ S3=\sum_{i=1}^a \sum_{j=1}^a\sum_{k=1}^a [\gcd(i,j,k)==1] \] 显然可以莫比乌斯反演一波,但这个是对的吗? 当有两个数字相同时只被算了3遍,而三个都相同的只被算了一遍. \[ S2=\sum_{i=1}^a\sum_{j=1}^a [\gcd(i,j)==1] \] 显然有\(S1=1\),那么就会得到最终答案: \[ ans=\frac…
题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题解 Polya定理+欧拉函数 根据 poj2409 中得到的结论,答案为: $\frac{\sum\limits_{i=1}^nn^{\gcd(i,n)}}n=\sum\limits_{i=1}^nn^{\gcd(i,n)-1}$ 由于 $n$ 有 $10^9$ 之大,因此考虑优化这个式子. 枚举…
Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色. 你可以对一张染色了的图进行若干次操作,每次操作形如,在图中选择一个简单环(即不经过相同点的环),并且将其颜色逆时针旋转一个单位. 形式的说,假设你选择的环上的边按顺序依次是e1, e2, ... ,ek,那么经过一次操作后ei mod n+1的颜色会变成操作前ei的颜色. 两种染色方案被认为是本质相同的,当且仅当其中一种染色后的图经过若干次操作后可以变成另一种染色后的图. 问有多少本质不同的染色方案,输出对10…
我第一次听说 Polya 原理是 NOIP2017 以前,但我觉得太难想着以后再学: NOIP2018 以前我觉得会考这玩意,下定决心学,后来咕了: WC2019 以前我觉得会考这玩意,下定决心学,后来咕了: SNOI2019 以前我觉得会考这玩意,下定决心学,后来咕了: CTS2019 以前我觉得会考这玩意,下定决心学,后来咕了: APIO2019 以前我觉得会考这玩意,下定决心学,后来咕了: THUSC2019 以前我觉得会考这玩意,下定决心学,后来咕了: 今天距离 NOI2019 还有不到…
题目链接 题意 求 n 个点的同构意义下不同的图的数量.\((n\leq 60)\) Sol \(Polya\) 定理的练手题. 我们这里先把边的存在与否变成对边进行黑白染色,白色代表不存在,这样就变成了一个对完全图中的边进行染色的问题,于是可以使用 对\(Burnside\)引理 进行优化后的 \(Polya\) 定理. 显然总的置换群大小是 \(n!\) 对应了每一种对边进行重新编号的方案,关键就在于要求出不动点的个数. 使用 \(Polya\) 定理,那么只需要求出所有关于边的置换中每一个…
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理,貌似思考的时候少了一些乐趣啊. 考虑一个置换 \(p\),想要求出这个置换下的不动点的个数.对于一个不动点,若存在一条边 \((a, b)\),一定存在一条边 \((p_a, p_b)\). 那么考虑一个长度为 \(l\) 的循环,若 \((i, j)\) 是一条 \(i, j\) 均在循环中的点…
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ \circ $ 的合称,其满足以下性质. 封闭性 对于 \(\forall a,b \in S\) , \(\exist c \in S\) 使得 \(c = a \circ b\) 结合律 对于 \(\forall a,b,c \in S\) , \(a \circ (b \circ c) = (…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不能旋转重复就称之为本质不同) 输入样例:4 输出样例:6 那么要怎么办呢?暴力显然暴不出来…… 我们可以考虑使用置换群. 我们有两种算法: ①Burnside引理: 答案直接为1/|G|*(D(a1)+D(a2)+D(a3)+……+D(as)) 其中D(ak)为在进行置换群置换操作ak下不变的元素的…
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷砖的正.反两面都必须漆成同样的颜色. 有一天小可可突发奇想,觉得有必要试试看这些瓷砖究竟能够漆成多少种本质不同的图案.所谓两种图案本质不同就是其中的一种图案无论如何旋转.或者翻转.或者同时旋转和翻转都不能得到另外一种图案. 旋转是将瓷砖三角形整体顺时针旋转120度或240度. 翻转是将瓷砖三角形整体…
Invoker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Others)Total Submission(s): 907    Accepted Submission(s): 364 Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael can contr…
http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置换群就是元素为置换的群. 再看 Polya入门  涨涨姿势. Burnside定理,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数. Polya定理:设 是n个对象的一个置换群, 用m种颜色染图这n个对象,则不同的染色方案数为:…
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <stdio.h> #include <iostream> #include <string.h> #include <math.h> #include <algorithm> using namespace std; int gcd(int a,int b) {…
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: (1)设G是p个对象的一个置换群,用k种颜色突然这p个对象,若一种染色方案在群G的作用下变为另一种方案,则这 两个方案当作是同一种方案,这样的不同染色方案数为: : (2)置换及循环节数的计算方法:对于有n个位置的手镯,有n种旋转置换和n种翻转置换.对于旋转置换: c(fi) = gcd(n,i) …
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However,…
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633 典型的Polya定理: 思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个数的平均值,根据Polya定理,不动点的个数等于Km(f),m(f)为置换f的循环节数,因此一次枚举魔方的24中置换,人肉数循环节数即可,注意细节,别数错了. 1.静止不动,(顶点8个循环,边12个循环,面54个循环) 2.通过两个对立的顶点,分别旋转120,240,有4组顶点,(点4个循环,边4个…
参考了http://blog.csdn.net/ACM_cxlove?viewmode=contents           by---cxlove 的模板 对于每一种染色,都有一个等价群,例如旋转,翻转等.我们将每一种变换转换成一个置换群,通过置换群得到的都是等价的染色方案 最终我们要求的是非等价的染色方案数. 在Burnside定理中给出,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数. 我们以POJ 2409 Let i…
UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手镯. 两个项链定义为相同,即它们只能通过旋转得到一样的项链. 求出有多少种本质不同的项链和手镯. \((1 \le n \le 50, 1 \le m \le 10)\) 题解 : (参考了一下这篇大佬博客) 大白书上的原题,一个裸的Polya定理(逃 Polya定理 : \[L=\frac{1}{…