Map Reduce Application(Partitioninig/Group data by a defined key) Assuming we want to group data by the year(2008 to 2016) of their [last access date time]. For each year, we use a reducer to collect them and output the data in this group/partition(y…
We are going to explain how join works in MR , we will focus on reduce side join and map side join. Reduce Side Join Assuming we have 2 datasets , one is user information(id, name...) , the other is comments made by users(user id, content, date...).…
Top 10 IDs base on their value First , we need to set the reduce to 1. For each map task, it is not a good idea to output each key/value pair. Instead, we can just output the top 10 IDs based on their value. So, less data will be written to disk and…
随着越来越多的公司采用Hadoop,它所处理的问题类型也变得愈发多元化.随着Hadoop适用场景数量的不断膨胀,控制好怎样执行以及何处执行map任务显得至关重要.实现这种控制的方法之一就是自定义InputFormat实现. InputFormat 类是Hadoop Map Reduce框架中的基础类之一.该类主要用来定义两件事情: 数据分割(Data splits) 记录读取器(Record reader) 数据分割 是Hadoop Map Reduce框架中的基础概念之一,它定义了单个Map任…
上一节分析了Job由JobClient提交到JobTracker的流程,利用RPC机制,JobTracker接收到Job ID和Job所在HDFS的目录,够早了JobInProgress对象,丢入队列,另一个线程从队列中取出JobInProgress对象,并丢入线程池中执行,执行JobInProgress的initJob方法,我们逐步分析. public void initJob(JobInProgress job) { if (null == job) { LOG.info("Init on…
1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. 函数式编程:是使用一系列函数去解决问题,函数式编程就是根据编程的范式来的出想要的结果,只要是输入时确定的,输出就是确定的. 1.2高阶函数 能把函数作为参数传入,这样的函数就称为高阶函数. 1.2.1函数即变量 以python的内置函数print()为列,调用该函数一下代码 >>> pri…
需求说明 用Map&Reduce计算几个班级中,每个班级10岁和20岁之间学生的数量: 需求分析 学生表的字段: db.students.insert({classid:1, age:14, name:'Tom'}) 将classid随机1和2.age在8-25岁之间随机,name在3-7个字符之间随机. 数据写入 数据写入java脚本 往mrtask库中students写入1000万条数据: package org.test; import java.util.ArrayList; impor…
1.filter filter(function,sequence) 对sequence中的item依次执行function(item),将执行的结果为True(符合函数判断)的item组成一个list.string.tuple(根据sequence类型决定)返回. #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: filter.py @time: 2016/4/9 22:03 &quo…
作者:Coldwings链接:https://www.zhihu.com/question/29936822/answer/48586327来源:知乎著作权归作者所有,转载请联系作者获得授权. 简单的说就是问题可以划分成若干单元,每个单元的计算互不相关,单元计算结果可以在可以承受的时间内合成为总结果的计算.再说直白一点:所有分治模型都可交由hadoop解决.可以说spark是功能更全面的hadoop,支持一些诸如filter.group之类的操作,但是原本思想仍是map reduce,差别不太大…
python基础——map/reduce Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=…