turicreate入门系列文章目录 1,turicreate入门 - jupyter & turicreate安装 2,turicreate入门 - 一个简单的回归模型 3,turicreate入门 - 优化回归模型,使得预测更准确 0,上传准备好的数据文件 fang_data2.csv 1,导入模块 import turicreate as tc 2,加载数据 sf = tc.SFrame('fang_data.csv') 可能遇到文件编码格式错误,使用文本编辑工具如notepad++将文件…
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) 经过上面两个部分,我们完成了数据生成.网络结构定义,下面我们终于可以小试牛刀,训练模型了! 首先,我们先定义一些训练时要用到的参数: EPOCH = 1000 # 就是要把数据用几遍 LR = 0.1 # 优化器的学习率,类似爬山的时候应该迈多大的步子. BATCH_SIZE=50 其次…
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) pytorch对于神经网络有很好的封装,使得我们可以快速.简单的实现神经网络框架的编写. 0. 准备数据,并对数据集进行划分.划分其实有很多方法:见数据集划分实战code # 准备数据 import random x = torch.unsqueeze(torch.linspace(0,…
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) 终于要构建模型啦.这里我们构建的是回归模型,是用神经网络构建的,基本结构是什么样的呢? 你肯定听说过,神经网络有输入层.隐藏层.输出层,一般结构如下图所示(图片来源于网络,侵删): 所以,对比我们之前生成的数据来说,形如x=3我们想得到的输出为y=8.分别对应了上面的输入层和输出层,所以…
写在前面 文本分类是nlp中一个非常重要的任务,也是非常适合入坑nlp的第一个完整项目.虽然文本分类看似简单,但里面的门道好多好多,作者水平有限,只能将平时用到的方法和trick在此做个记录和分享,希望大家看过都能有所收获,享受编程的乐趣. 第一部分 模型 Bert模型是Google在2018年10月发布的语言表示模型,一经问世在NLP领域横扫了11项任务的最优结果,可谓风头一时无二.有关于Bert中transformer的模型细节,推荐看这篇.在此不做赘述. ​ ​图一:bert分类模型结构…
****对访问进行权限控制: 有权限则可以访问, 否则提示: 没有对应的权限, 请 返回其访问者的权限可以在manager那进行设置:…
看完<Go Web 编程>的前两章就可以开始写代码了. import ( "fmt" "io/ioutil" "log" "net/http" "net/url" ) func main() { //resp, _ := doGet("http://www.baidu.com") //resp, _ := doPost("http://www.baidu.com&q…
turicreate入门系列文章目录 1,turicreate入门 - jupyter & turicreate安装 2,turicreate入门 - 一个简单的回归模型 3,turicreate入门 - 优化回归模型,使得预测更准确 在上一篇文章中 turicreate入门 - 一个简单的回归模型 我们创建了一个简单的[房屋面积-价格]线性模型,直观的感觉,预测应该不是很准,因为价格不仅跟面积相关,还与所在区域关系很大,黄埔区的一般肯定比金山区的价格高. area_price_model.ev…
turicreate入门系列文章目录 1,turicreate入门 - jupyter & turicreate安装 2,turicreate入门 - 一个简单的回归模型 3,turicreate入门 - 优化回归模型,使得预测更准确 1,Windows10 WSL 安装ubuntu18.04.Windows10如何安装,请自行百度. 2,更新apt源 sudo apt-get update 3,更改apt源为阿里源,提高下载速度 sudo mv /etc/apt/source.list /ec…
weka提供了几种处理数据的方式,其中分类和回归是平时用到最多的,也是非常容易理解的,分类就是在已有的数据基础上学习出一个分类函数或者构造出一个分类模型.这个函数或模型能够把数据集中地映射到某个给定的类别上,从而进行数据的预测.就是通过一系列的算法,将看起来本来分散的数据,给划分成一个个不同的类,我们可以知道某个数据为什么要划分到这个类别,后来的数据通过这个过程就可以知道把它划分到哪个类别,从而进行了数据的预测. 要进行分类,我们根据什么分类,这就需要把数据分为训练集和测试集两个部分,先分析训练…