转自:https://www.zhihu.com/question/35602879 1.问题: SVM中,对于线性不可分的情况下,我们利用升维,把低维度映射到到维度让数据变得“更可能线性可分”,为了避免维度爆炸,我们巧妙的运用了核函数,避免了在高维度空间的计算,而只需要在低维度空间进行计算. 对于核函数,有: 多项式核: 高斯核: 对于多项式核,我们把低维度映射到高维度,我们可以从公式中很容易的理解,但是对于高斯核,“把维度映射到无穷多维”,是如何理解的?如何看出是“无穷多维”的? 2.回答…
It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using…
Radial Basis Functions (RBFs) are set of functions which have same value at a fixed distance from a given central point. Even Gaussian Kernels with a covariance matrix which is diagonal and with constant variance will be radial in nature. In SVMs, RB…
参考: https://blog.csdn.net/u012633319/article/details/80921023 二维高斯核, 可以根据下面的公式推到为两个一维高斯核的乘积: 原型: /** @brief Returns Gaussian filter coefficients. The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter coefficien…
前面两篇介绍了SOM的基本概念和算法,第一部分,第二部分,本篇具体展开一下应用中的一些trick设定. SOM设计细节 输出层设计 输出层神经元数量设定和训练集样本的类别数相关,但是实际中我们往往不能清除地知道有多少类.如果神经元节点数少于类别数,则不足以区分全部模式,训练的结果势必将相近的模式类合并为一类:相反,如果神经元节点数多于类别数,则有可能分的过细,或者是出现"死节点",即在训练过程中,某个节点从未获胜过且远离其他获胜节点,因此它们的权值从未得到过更新. 不过一般来说,如果对…
1981年芬兰 Helsink 大学的 T·Kohonen 教授提出一种自组织特征映射网 (Self-Organizing Feature Map , SOFM ), 又称 Kohonen 网 . Kohonen 认为 ,一个神经网络接受外界输入模式时, 将会分为不同的对应区域, 各区域对输入模式具有不同的响应特征,而且这个过程是自动完成的. 自组织特征映射正是根据这一看法提出来的 ,其特点与人脑的自组织特性相类似. 一.SOFM网生物学基础 生物学研究表明,在人脑感觉通道上,神经元的组织原理是…
1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构. 2 推导 拉普拉斯特征映射通过构建邻接矩阵为 $W$ (邻接矩阵定义见这里) 的图来重构数据流形的局部结构特征.其主要思想是,如果两个数据 实例 $i$…
import graphviz import mglearn from mpl_toolkits.mplot3d import Axes3D from sklearn.datasets import load_breast_cancer, make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.s…
转摘网址:http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html Hog参考网址:http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测. 算法流程图如下(这篇论文上的): 下面我再结合自己的程序,表述一遍吧:…
感觉是有很久没有回到博客园,发现自己辛苦写的博客都被别人不加转载的复制粘贴过去真的心塞,不过乐观如我,说明做了一点点东西,不至于太蠢,能帮人最好.回校做毕设,专心研究多流形学习方法,生出了考研的决心.话不多说,看论文带大家走入Joshua B. Tenenbaum的Isomap的世界! 大数据时代的人总是那么的浮躁不安,高维并不可怕,事实的本质总是简单而单调的,因此流形学习理念中直接假设高维的数据都存在低维的本征结构.自“流形”这个概念被提出以来,许多人都在寻找一个高维数据中最现实的问题——降维…
void cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr* curr_pyr, const CvPoint2D32f* prev_features, CvPoint2D32f* curr_features, int count, CvSize win_size, int level, char* status, float* track_error, CvTermCriter…
下面是实验室大牛师兄自己写的一段总结,主要内容是Laplacian Eigenmap中的核心推导过程. 有空还是多点向这位师兄请教,每次都会捡到不少金子. Reference : <Laplacian Eigenmaps for Dimensionality Reduction and Data Representation>,2003,MIT…
转载地址:http://www.cnblogs.com/skyseraph/archive/2011/08/27/2155776.html 一 原理 1 概念:GLCM,即灰度共生矩阵,GLCM是一个L*L方阵,L为源图像的灰度级 2 含义:描述的是具有某种空间位置关系的两个像素的联合分布,可看成两个像素灰度对的联合直方图,是一种二阶统计 3 常用的空间位置关系:有四种,垂直.水平.正负45° 4 常用的GLCM特征特征: (1)能量:  是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰…
[转](转)Linux内核访问外设I/O资源的方式-静态映射(map_desc)方式 Linux内核访问外设I/O资源的方式 Author: Dongas Date: 08-08-02 我们知道默认外设I/O资源是不在Linux内核空间中的(如sram或硬件接口寄存器等),若需要访问该外设I/O资源,必须先将其地址映射到内核空间中来,然后才能在内核空间中访问它. Linux内核访问外设I/O内存资源的方式有两种:动态映射(ioremap)和静态映射(map_desc). 一.动态映射(iorem…
什么是MyBatis映射器? MyBatis框架包括两种类型的XML文件,一类是配置文件,即mybatis-config.xml,另外一类是映射文件,例如XXXMapper.xml等.在MyBatis的配置文件mybatis-config.xml包含了<mappers></mappers>节点,这里就是MyBatis映射器. 1.MyBatis映射器发展历史简介 映射器是MyBatis中最核心的组件之一,在MyBatis 3之前,只支持XML映射器,所有的SQL语句都必须在XML文…
chromedriver版本 支持的Chrome版本 v2.34 v61-63 v2.33 v60-62 v2.32 v59-61 v2.31 v58-60 v2.30 v58-60 v2.29 v56-58 v2.28 v55-57 v2.27 v54-56 v2.26 v53-55 v2.25 v53-55 v2.24 v52-54 v2.23 v51-53 v2.22 v49-52 v2.21 v46-50 v2.20 v43-48 v2.19 v43-47 v2.18 v43-46 v2…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
这一章主要解说Ng的机器学习中SVM的兴许内容.主要包括最优间隔分类器求解.核方法. 最优间隔分类器的求解 利用以一篇讲过的的原始对偶问题求解的思路,我们能够将相似思路运用到SVM的求解上来. 详细的分析例如以下: 对于SVM求解的问题: 我们把约束条件略微变形一下: 仅仅有函数间隔是1的点才干使上式取等号,也就是有意义的.例如以下图: 叉叉和圈圈分别代表正反例,能够看出,仅仅有落在边缘的点的α≠0,这些点才是支持向量.其它的点α=0,对切割超平面没有意义.上图的支持向量一共同拥有3个. 写出拉…
核函数(Kernels) 定义 1.1 (核或正定核) 设是中的一个子集,称定义在上的函数是核函数,如果存在一个从到Hilbert空间的映射 使得对任意的,都成立.其中表示Hilbert空间中的内积. 在低纬度空间里不可分的问题,我们可以通过将其向高纬度空间转化,使其线性可分.而转换的关键是找到低维空间向高纬的映射方法. 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
主要内容 一:SVM简介 二:线性分类 三:分类间隔 四:核函数 五:松弛变量 SVM简介 支持向量机(support vector Machine)是由Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中. 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模式的复杂性(即对特定训练样本的学习精度,Accurary)和学习能力(即无错误地识别任意样本…
知识预备 1. 回顾:logistic回归出发,引出了SVM,即支持向量机[续]. 2.  Mercer定理:如果函数K是上的映射(也就是从两个n维向量映射到实数域).那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例,其相应的核函数矩阵是对称半正定的. 核函数描述和分析 考虑在” 回归和梯度下降 “一节的“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
x=[0 1 0 1 2 -1];y=[0 0 1 1 2 -1];z=[-1 1 1 -1 1 1]; %其中,(x,y)代表二维的数据点,z 表示相应点的类型属性. data=[1,0;0,1;2,2;-1,-1;0,0;1,1];% (x,y)构成的数据点 groups=[1;1;1;1;-1;-1];%各个数据点的标签 figure; subplot(2,2,1); Struct1 = svmtrain(data,groups,'Kernel_Function','quadratic',…
首先,对于支持向量机(SVM)的简单总结: 1. Maximum Margin Classifier 2. Lagrange Duality 3. Support Vector 4. Kernel 5. Outliers 6. Sequential Minimal Optimization 本文转载自:http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论>的报告,那时去网…
1.SVM的原理是什么? SVM是一种二类分类模型.它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器.(间隔最大是它有别于感知机) 试图寻找一个超平面来对样本分割,把样本中的正例和反例用超平面分开,并尽可能的使正例和反例之间的间隔最大. 支持向量机的基本思想可以概括为,首先通过非线性变换将输入空间变换到一个高维的空间,然后在这个新的空间求最优分类面即最大间隔分类面,而这种非线性变换是通过定义适当的内积核函数来实现的.SVM实际上是根据统计学习理论依照结构风险最小化的原则提出的,要…
机器学习--支持向量机(SVM) 支持向量机(Support Vector Machine)广泛地应用于分类问题,回归问题和异常检测问题.支持向量机一个很好的性质是其与凸优化问题相对应,局部最优解就是全局最优解. 本来打算大致写一下思想的.结果发现了已经有大神写的超级棒了.链接如下,看懂后来做笔记,http://blog.csdn.net/v_july_v/article/details/7624837 线性可分模型 如上图所示,两组数据中间存在一条直线,使得两组数据分别在线的两侧.这就是最简单…
http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988406.html http://blog.pluskid.org/?p=685 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点.那么首先需要将特征x扩展到三维,然后寻找特征和结果之间的模型.我们将这种特征变换称作特征映射(feature map…
1.什么是支持向量机(SVM) 所谓支持向量机,顾名思义,分为两部分了解:一,什么是支持向量(简单来说,就是支持或支撑平面上把两类类别划分开来的超平面的向量点):二,这里的“机(machine,机器)”便是一个算法.在机器学习领域,常把一些算法看做是一个机器,如分类机,而支持向量机本身便是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中. 支持向量机是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛华能力,实现经验风险和置信范围的最小化,从…
1.SVM的原理是什么? SVM是一种二类分类模型.它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器.(间隔最大是它有别于感知机) 试图寻找一个超平面来对样本分割,把样本中的正例和反例用超平面分开,并尽可能的使正例和反例之间的间隔最大. 支持向量机的基本思想可以概括为,首先通过非线性变换将输入空间变换到一个高维的空间,然后在这个新的空间求最优分类面即最大间隔分类面,而这种非线性变换是通过定义适当的内积核函数来实现的.SVM实际上是根据统计学习理论依照结构风险最小化的原则提出的,要…
SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类. 有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值.下图来自龙老师整理课件. 基本概念 线性SVM,线性可分的分类问题场景下的SVM.硬间隔. 线性不可分SVM,很难找到超平面进行分类场景下的SVM.软间隔. 非线性SVM,核函数(应用最广的一种技巧,核函数…
支持向量机SVM 原创性(非组合)的具有明显直观几何意义的分类算法,具有较高的准确率源于Vapnik和Chervonenkis关于统计学习的早期工作(1971年),第一篇有关论文由Boser.Guyon.Vapnik发表在1992年(参考文档见韩家炜书9.10节)思想直观,但细节异常复杂,内容涉及凸分析算法,核函数,神经网络等高深的领域,几乎可以写成单独的大部头与著.大部分非与业人士会觉得难以理解.某名人评论:SVM是让应用数学家真正得到应用的一种算法 思路 简单情况,线性可分,把问题转化为一个…