VGG网络结构】的更多相关文章

这个结构其实不难,但是它里面训练的一些东西我还没有搞清楚,打算把昨天写的代码传上来,方便日后来看,发现了一个很有意思的库叫TF-slim打算哪天看看有没有好用的东西 from datetime import datetime import math import time import tensorflow as tf import numpy as np """ create a function to construct a convLayer and put the p…
 VGG网络  VGG16输入224*224*3的图片,经过的卷积核大小为3x3x3,stride=1,padding=1,pooling为采用2x2的max pooling方式: 1.输入224x224x3的图片,经过64个卷积核的两次卷积后,采用一次pooling.经过第一次卷积后,c1有(3x3x3)个可训练参数 2.之后又经过两次128的卷积核卷积之后,采用一次pooling 3.再经过三次256的卷积核的卷积之后,采用pooling 4.重复两次三个512的卷积核卷积之后再poolin…
上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得了第2名的成绩(第一名是GoogLeNet,也是同年提出的).在论文<Very Deep Convolutional Networks for Large-Scale Image Recognition>中,作者提出通过缩小卷积核大小来构建更深的网络. Vgg网络结构 VGGnet是Oxford的…
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的).论文下载 Very Deep Convolutional Networks for Large-Scale Image Recognition.论文主要针对卷积神经网络的深度对大规模图像集识别精度的影响,主要贡献是使用很小的卷积核(\…
VGG论文给出了一个非常振奋人心的结论:卷积神经网络的深度增加和小卷积核的使用对网络的最终分类识别效果有很大的作用.记得在AlexNet论文中,也做了最后指出了网络深度的对最终的分类结果有很大的作用.这篇论文则更加直接的论证了这一结论. 网络结构 论文指出: VGG不仅在ILSVRC的分类和检测任务中取得了the state-of-the-art的精度 在其他数据集上也具有很好的推广能力 结构Architecture 说明: *1x1卷积核:降维,增加非线性性 *3x3卷积核:多个卷积核叠加,增…
cnn发展史 这是imageNet比赛的历史成绩 可以看到准确率越来越高,网络越来越深. 加深网络比加宽网络有效的多,这已是公认的结论. cnn结构演化图 AlexNet 诞生于2012年,因为当时用了两个GPU(硬件设备差),所以结构图是2组并行 网络结构总共8层,5个卷积层,3个全连接层,最后输出1000个分类 分层结构图 简单解释如下: conv1:输入为224x224x3,96个shape为11x11x3的卷积核,步长为4,输出55x55x96的特征图,(224-11)/4+1,padd…
本博客参考作者链接:https://zhuanlan.zhihu.com/p/41423739 前言: VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG名字的由来了).该网络是在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能.VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样. VGG原理 VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积…
本文详细解释了 Faster R-CNN 的网络架构和工作流,一步步带领读者理解目标检测的工作原理,作者本人也提供了 Luminoth 实现,供大家参考.   Luminoth 实现:https://github.com/tryolabs/luminoth/tree/master/luminoth/models/fasterrcnn 去年,我们决定深入了解 Faster R-CNN,阅读原始论文以及其中引用到的其他论文,现在我们对其工作方式和实现方法有了清晰的理解. 我们最终在 Luminoth…
上次拜读了CTPN论文,趁热打铁,今天就从网上找到CTPN 的tensorflow代码实现一下,这里放出大佬的github项目地址:https://github.com/eragonruan/text-detection-ctpn 博客里的代码都是经过实际操作可以运行的,这里只是总结一下代码的实现过程,提高一下自己的代码能力,争取早日会自己写代码 !!!>o<!!! 首先从train_net.py开始开刀吧.... import pprint import sys import os.path…
小编在学习文字检测,因为作者提供的caffe实现没有训练代码(不过训练代码可以参考faster-rcnn的训练代码),所以我打算先使用tensorflow实现,主要是复现前辈的代码,主要是对文字检测模型进行训练. 代码的GitHub地址:https://github.com/eragonruan/text-detection-ctpn 主要写一下自己实现的过程,因为原文给的步骤,小编没有完全实现,所以首先打算解读一下原文步骤,然后加上自己的理解,写下自己可以实现的步骤. 文本检测概述 文本检测可…